Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейкака Аналка и МАТАН.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.16 Mб
Скачать

2.4. Основные теоремы дифференциального исчисления.

Теорема Ролля, теорема о корнях производных.

Доказательство:

Пусть гладкая на , .

Тогда :

Любая гладкая функция, имеющая на концах отрезка одинаковые значения имеет, внутри этого отрезка, хотя бы один корень производной.

при

при

Теорема Коши о среднем.

Доказательство:

Пусть - гладкие на .

на

Тогда : , где .

F – гладкая на отрезке . По теореме Ролля : .

по условию, а так как иначе по теореме Ролля , что противоречит условию.

Теорема Логранжа. Теорема о конечных приращениях.

Доказательство:

Пусть гладкая на ,

Тогда : .

Пусть :

Геометрический смысл:

Для любой гладкой на замкнутом отрезке кривой найдется точка, в которой касательная параллельна хорде AB.

Правило Лопиталя (теорема Вернули – Лопиталя).

Пусть и гладкие в окрестности и

Тогда

Правило Лопиталя: Предел отношения функций равен пределу отношения их производных.

Доказательство:

Применим теорему для и , , где а - точка в окрестности .

где .

Примеры:

1)

2)

3)

2.5. Формула тейлора.

Пусть определена и непрерывна и имеет все производные до n-ого порядка включительно, в некоторой точке .

- остаточный член в форме Тейлора.

- полином Тейлора для .

1)

2)

3) , где k=0,1,2,…n.

Запись остаточного члена.

– остаточный член в форме Логранжа.

– остаточный член в форме Коши.

– остаточный член в форме Пиано.

Ряд Тейлора.

Формула Маклорена.

Любой многочлен совпадает со свой формулой Маклорена, при этом постоянный член равен.

1)

  

2)

3)

4)

5)

2.6. Монотонность, экстремумы функции.

Функция называется возрастающей если большему значению аргумента соответствует большее значение функции, а меньшему соответствует меньше.

Функция называется убывающей если большему значению аргумента соответствует меньшее значение функции, а меньшему соответствует большее.

Теорема. У возрастающей функции производная больше 0 ( ).

Доказательство:

x

-1

y

min

0

+

 

Экстремумы функции.

Т очка -называется точкой max, если существует некоторая окрестность точки, что для любой точки x из этой окрестности .

Точка -называется точкой min, если существует некоторая окрестность точки, что для любой точки x из этой окрестности .

Необходимый признак экстремума, если -точка экстремума.

Если и , то это точка экстремума.

Если - точка экстремума и существует , то производная =0. Точка, в которой производная, равна нулю, называется критической точкой.

, теорема Логранжа.

Первый достаточный признак экстремума.

Если при переходе через критическую точку производная меняет знак с ”+” на “-“,то в этой точке максимум.

Если при переходе через критическую точку производная меняет знак с ”-” на “+“,то в этой точке минимум.

 

Второй достаточный признак экстремума.

Если в критической точке 2-ая производная больше нуля, то это точка минимума, а если в критической точке 2-ая производная меньше нуля, то это точка максимума.

Пример:

x

1

3

y

Max

Min

+

0

-

0

+