Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейкака Аналка и МАТАН.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.16 Mб
Скачать

1.3. Предел функции. Свойства пределов

Число b называется пределом функции в точке а, если для любой – окрестности точки b существует – окрестность точки а.

     

– предел функции при , равный b.

Число b называется пределом функции при неограниченном возрастании аргумента . Для любого существует такое N, и если , то .

Примеры:

y = f(x) =

y = f(x) = x2

Пример:

y = , когда ,

Неопределенности:

Раскрытие неопределенностей.

Теорема об ограниченности функции, имеющей предел.

Если функция f(x) имеет предел в точке a ,то она ограниченна в некоторой окрестности точки a.

Доказательство:

Пусть , тогда , отсюда получаем . Обратное неверно.

Контрольный пример:

в окрестности точки 0.

– не существует.

Бесконечно малой величиной при называется функция, предел которой в точке a равен 0.

– бесконечно малая величина (б.м.в.).

  1. – бесконечно малая величина при

  2. – бесконечно малая величина при s

Бесконечно большой величиной при называется функция неограниченно возрастающая.

– бесконечно большая величина (б.б.в.)

Любая бесконечно большая величина неограниченна.

Теорема о связи предела и бесконечно малой величины.

Если , то , где – бесконечно малая величина. Или .

Доказательство:

Допустим, что , тогда .

, значит , – бесконечно малая величина.

Пример:

f(x) = x2 + 1

Теорема о связи бесконечно малой и бесконечно большой величиной.

Если – бесконечно малая величина при    – бесконечно большая величина.

Если – бесконечно большая величина при – бесконечно малая величина.

Доказательство:

Допустим, что – бесконечно малая величина при , то , что . Значит

Следствие: и

Свойства бесконечно малых величин:

1) Алгебраическая сумма бесконечно малых величин есть бесконечно малая:

Доказательство:

или , значит – бесконечно малая величина.

2) Произведение бесконечно малой величины на ограниченную функцию есть бесконечно малая: , где f(x) – ограниченная.

Доказательство:

, значит – бесконечно малая величина.

3) Частное от деления бесконечно малой величины на любую функцию, предел которой не равен 0, есть бесконечно малая: при и .

Теоремы о пределах.

Теорема 1. Предел суммы равен сумме пределов, если они существуют:

Доказательство:

Из теоремы о связи между пределом и бесконечно малой величиной следует:

Получаем

Теорема 2. Предел произведения равен произведению пределов, если они существуют:

Доказательство:

Из теоремы о связи между пределом и бесконечно малой величиной следует:

Получаем

Теорема 3. Предел частного равен частному пределов: . При условии: все пределы существуют и .

Доказательство:

Из теоремы о связи между пределом и бесконечно малой величиной следует:

;

Получаем:

Теорема 4. Предел сохраняет знак неравенства. Если .

Доказательство:

Следовательно,

Следствие:

Теорема 5. Если функция ограниченна и монотонна на (a, b), то она имеет предел:

Теорема 6. Критерий Коши.

Если , тогда и только тогда .

Приемы раскрытия неопределенностей.

1) Выделение общего множителя (для неопределенности ).

Пример:

2) Умножение на сопряженное выражение (для неопределенности ).

Пример:

3) Выделение главной части (для неопределенности ).

Примеры:

;

Теорема. Первый замечательный предел .

Доказательство (геометрическое):

Так как , то .

Следствия из теоремы:

1)

2)

3)

4)

5)

Теорема. Второй замечательный предел .

Доказательство:

Бином Ньютона:

, где .

Используем бином Ньютона для доказательства неравенства:

Отсюда заключаем, что , а значит .

Следствия из теоремы:

1)

2)

3)

4)

Доказательство:

Если принять, что , то

Примеры:

1)

Учитывая, что .

2)

. Отсюда A = e.

Учитывая, что .

Сравнение бесконечно малых величин (б.м.в.):

Пусть – бесконечно малые величины при , т.е. .

Определение 1. Если , то – б.м.в. одного порядка малости.

Определение 2. Если , то – б.м.в. более высокого порядка, чем .

более высокого порядка, чем ("о" – читается как "о малое").

– более низкого порядка, чем ("О" – читается как "О большое").

Определение 3. Если , то и эквивалентны – .

Следствие из определения 3: при .

Теорема. Если и эквивалентны ( ) , то и .

Доказательство:

Пусть – бесконечно малые величины при и они эквивалентны ( ).

Тогда .

Определение 1. Пусть функция определена в окрестности точки , тогда функция непрерывна в , если .

Определение 2. Функция непрерывна, если .

Определение 3. Функция непрерывна в точке , если .Приращение аргумента . Приращение функции .

Определение 4. Функция непрерывна в точке , если . Если функция не является непрерывной в точке , то эта точка – точка разрыва. Если функция непрерывна на отрезке (a, b), то функция неразрывна на отрезке (a, b).

 

Определение 5. Функция непрерывна в точке справа, если .

Определение 6. Функция непрерывна в точке слева, если .

Функция непрерывна на отрезке , если она непрерывна в каждой внутренней точке этого отрезка и односторонне непрерывна на его концах.

Теоремы о непрерывных функциях.

Теорема 1. Сумма, произведение и частное непрерывных функций – непрерывны (кроме случая, когда знаменатель обращается в нуль).

Доказательство:

Пусть и .

Тогда .

Доказательство для умножения и деления аналогично доказательству для сложения.

Теорема 2. Композиция непрерывных функций непрерывна:

Функция непрерывна в точке , если g(x) непрерывна в точке и f(y) непрерывна в .

Теорема 3. Все элементарные функции непрерывны в своей области определения.

Разрывы функции.

Разрыв первого рода.

Пусть и существуют:

I. Если , то в точке функция испытывает разрыв скачок первого рода.

Примеры:

  1.   

  2. – целая часть числа x.

  1. – дробная часть от числа x.

II. Если , то в точке функция испытывает устранимый разрыв первого рода.

Примеры:

1)

2)

3)

4)

Разрыв второго рода.

Функция испытывает разрыв второго рода, если – не существует.

Свойства функции, непрерывной на замкнутом отрезке.

Пусть функция непрерывна на замкнутом отрезке .

 

Т еорема 1. Функция принимает наибольшее и наименьшее значение на . Или , где .

Т еорема 2. Функция принимает все свои промежуточные значения на . Или , где – область значений.

Т еорема 3. Если функция принимает на концах отрезка значения разных знаков, то внутри отрезка найдется точка, в которой . Или .