Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_voprosy_po_lineynoy_algebre.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
146.43 Кб
Скачать

1.Матрицы и действия над ними.Числовой матрицей

размера (m * n) называется прямоугольная таблица чисел,

состоящая из m строк и n столбцов:

a11 a12 …... a1n

А = a21 a22 …... a2n = (aij)

am1 am2 …. Amn где i – первый индекс,

показывающий номер строки, а j – второй индекс указывает

на номер столбца. Строки и столбцы матрицы называются ее рядами.

Если число строк в матрице равно числу столбцов, то есть m=n,

то матрица называется квадратной матрицей порядка n.

а11 а12 а13

А = а21 а22 а23

а31 а32 а33

Виды матриц:

1. Прямоугольные матрицы размера (m * n):

4 -3 2 1 4 -3

3 -8 0 5 3 -8

  1. 7

2.Матрица – строка - состоит из одной

строки и n столбцов, размера (1 * n):

  1. -4 6….1

3.Матрица – столбец – состоит из одного

столбца и m строк, размера (m * 1):

4. Квадратная матрица порядка n - это матрица, у

которой число строк равняется числу столбцов m=n.

Количество строк и столбцов определяет порядок матрицы.

2 -5 7

А = 3 -4 1

1 2 -3

Среди квадратных матриц можно выделить следующие:

4.1 Верхняя и нижняя треугольные матрицы : В верхней

треугольной матрице все алименты, стоящие ниже главной

диагонали, равны нулю, а в нижней треугольной матрице

все элементы, стоящие выше главной диагонали, равны

нулю. Транспонирование верхнее треугольной матрицы

дает нижнюю треугольную матрицу и наоборот.

3 -5 4 2 0 0

0 4 -1 8 -5 0

0 0 2 4 6 3

4.2 Диагональная и скалярная матрицы: В диагональной

матрице ненулевыми являются только элементы, стоящие

на главной диагонали, а в скалярной матрице все эти

элементы должны быть одинаковыми. Определитель

диагональной и скалярной матриц равны произведению

диагональных элементов.

2 0 0 5 0 0

0 -1 0 0 5 0

0 0 6 0 0 5

4.3 Единичная матрица – это такая матрица, у которой

диагональные элементы равны единице, а остальные

элементы равны нулю. Определитель единичной матрицы

равен единице. Обозначается заглавной буквой Е.

1 0 1

Е = 0 1 0

0 0 1

Действия над матрицами:

Над матрицами можно выполнять как

линейные, так и нелинейные операции.

К линейным операциям над матрицами

относятся: сложение (вычитание) матриц,

умножение матрицы на число, линейная

комбинация матриц. Нелинейные операции

– произведение матриц, возведение матрицы

в целую степень.

Линейные операции над матрицами:

1.Сложение (вычитание) матриц – для того,

чтобы сложить (вычесть) две матрицы, нужно

сложить (вычесть) их соответствующие элементы

(т. е. элементы, стоящие на одинаковых

местах в обеих матрицах).

4 -7 5 1 -4 8 5 -11 13

А + В = 2 0 -3 + 12 -5 0 = 14 -5 -3

2.Умножение матрицы на число – для того, чтобы

умножить (разделить) матрицу на отличное от нуля

число, нужно умножить (разделить) на это

число все элементы этой матрицы.

4 -1 -20 5

-5 * А = -5 * 5 2 = -25 -10

3 -7 -15 35

Линейная комбинация матриц – матрица С

называется линейной комбинацией матриц А и В,

если выполняется равенство: С = А+ В, где

и - коэффициенты линейной комбинации.

-2 5 8 3 -42 13

С = 5В – 4А = 5 * 6 -7 - 4 * -1 -6 = 34 -11

1 -2 0 -11 5 34

Нелинейные операции над матрицами:

1.Произведение матриц – для того чтобы умножить

матрицу на число, необходимо все элементы

матрицы умножить на это число.

2.Возведение матрицы в целую степень

при возведении матрицы в степень мы умножаем

ее саму на себя нужное число раз.. А = А * А

А = А * А * А = А * А = А * А

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]