Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
414.44 Кб
Скачать

12. Усилители электрических сигналов. Классификация. Принципы работы, характеристики, параметры, области применения, обратные связи в усилителях.

Усилители – это преобразователи энергии пост поля, создаваемого ист питания, в энергию вых сигнала на нагр-ке. Управление этим процессом осущ ист питания.

Разновидности усилителей:

- УТ, УН, УМ.

Любой усилитель – это управляемый источник. М.б. по току, напр-ю, след-но обеспечивать разные коэф передачи: Ki, Ku, Kp=Ki*Ku.

Классификация усилителей.

однокаскадные или многокаскадные

По виду межкаскадных соединений : непосредственная, резистивная, конденсаторная, трансформаторная.

По усиливающему параметру : усил напряжения, тока мощности, усилитель- формирователь.

По частотным свойствам: широкополосные, узкополосные, усилители постоянного тока, избирательный усилитель.

По виду обратной связи.

Принцип работы усилительного прибора основан на изменении его активного и реактивного сопротивления под воздействием сигнала малой мощности.

Виды обратной связи в усилителях.

Обратная связь – подача какого-то параметра (U, I) на вход.

Положительная обратная связь – суммирование входного с выходным сигналом при =0 (разность фаз).

Отрицательная обратная связь – суммирование входного с выходным сигналом при = (разность фаз).

Усилители с отрицательной обратной связью, а генераторы с положительной.

Делят ОС: 1) по току и напряжению. 2) параллельная и последовательная.

Виды межкаскадной связи в усилителях.

Усилители бывают однокаскадные и много каскадные.

Каскад:

KU=Sum(KUi)

KI=Sum(KIi)

Виды межкаскадных связей:

а) Емкостная межкаскадная связь (Когда необходимо передать симметричный относительно оси времени сигнал):

б) Трансформаторная связь (увеличивается КПД, для частот <10kHz):

в) Резистивная: См конденсаторную, вместо конденсатора резистор.

г) Непосредственная (необходимо согласование сопротивлений).

15. Усилительный каскад на биполярном транзисторе в схеме включения с общим коллектором. Принцип работы. Назначение элементов электрической схемы. Расчет рабочей точки. Схема замещения каскада. Расчет параметров по постоянному и переменному току. Особенности параметров.

Схему рис. 1.23а называют каскадом с общим коллектором (ОК), потому что коллекторный вывод транзистора по переменному току является общим электродом для входной и выходной цепей каскада. Схема также называется эмиттерным повторителем, т.к. выходное напряжение, снимаемое с эмиттера транзистора близко по величине входному напряжению ( Uвых = Uвх + Uбэ Uвх ) и совпадает с ним по фазе.

Рисунок 1.23 - Схема усилительного каскада ОК (а) и его схема замещения (б)

Расчет каскада по постоянному току проводят аналогично со схемой ОЭ. Резистор Rэ в схеме выполняет ту же функцию, что и резистор Rк в схеме ОЭ – создание изменяющегося напряжения в выходной цепи за счет протекания в ней тока, по цепи базы. Конденсаторы Ср1 и Ср2 являются разделительными, а резисторы R1 и R2 предназначены для задания рабочей точки, причем для повышения входного сопротивления резистор R2 в схему часто на вводят.

Входное сопротивление каскада ОК определяется параллельно включенными сопротивлениями R1, R2 и сопротивлением входной цепи транзистора rвх:

Rвх = R1 || R2 || rвх

Из эквивалентной схемы замещения рис.1.23б можно найти:

Uвх = Iб [rб + (1 +b)(rэ + Rэ || Rн)]

а разделив левую и правую часть уравнения на Iб получим:

rвх = rб + (1 +b)(rэ + Rэ || Rн)

Если принять, что rэ и rб значительно меньше других составляющих полученного выражения, то входное сопротивление транзистора , включенного по схеме ОЭ

rвх = (1 +b)(Rэ || Rн),

а входное сопротивление каскада ОК:

Rвх = R1 || R2 || (1 +b)(Rэ || Rн)

При достаточно высокоомном входном делителе и транзисторе с высоким входное сопротивление каскада может достигать десятков-сотен кОм, что является одним из важнейших достоинств каскада ОК.

Коэффициент усиления по току можно определить , используя эквивалентную схему замещения, аналогично каскаду ОК

Ток нагрузки является частью эмиттерного тока транзистора, поэтому:

откуда:

Выразив аналогично схеме ОЭ ток базы через входной ток каскада получаем:

Разделив левую и правую часть уравнения на Iвх имеем:

т.е. коэффициент усиления каскада ОК зависит от соотношений Rвх и rвх, а также Rэ и Rн. Если предположить, что Rвх rвх, имеем;

Таким образом, каскад ОК обеспечивает усиление по току, причем при Rэ = Rк и одинаковых значениях Rн коэффициенты усиления по току в схемах ОК и ОЭ примерно одинаковы. Коэффициент усиления по напряжению аналогично схеме ОЭ может быть определен как:

После подстановки значения КI:

Для оценки коэффициента усиления каскада ОК по напряжению примем Rвх >> Rг и считаем делитель в цепи базы достаточно высокоомным. Это позволяет принять и получить КU 1. Точный расчет дает КU < 1 и в пределе стремится к единице.

Выходное сопротивление каскада ОК представляет собой сопротивление со стороны эмиттера, которое из эквивалентной схемы замещения определяется как:

Выходное сопротивление каскада ОК мало и составляет 10 - 50 Ом, поэтому каскад ОК целесообразно использовать при необходимости согласования выходной цепи усилителя с низкоомным сопротивлением нагрузки.

  1. Усилительный каскад на биполярном транзисторе в схеме включения с общей базой. Принцип работы. Назначение элементов электрической схемы. Расчет рабочей точки. Схема замещения каскада. Расчет параметров по постоянному и переменному току. Особенности параметров.

Работу каскада с ОБ как усилителя легче понять, если представить его как каскад с ОЭ, охваченный 100%-ной параллельной ООС по току. Поскольку здесь нет делителя тока, то весь выходной ток Iк протекает и во входной цепи, т. е. коэффициент передачи тока по цепи ОС βт=1.

Такое представление дает возможность определить параметры каскада с ОБ через параметры каскада с ОЭ с учетом действия ОС.

При любом сопротивлении нагрузки коэффициент усиления по току каскада с ОБ (3)

Из (3) видно, что при Rн=0 коэффициент Kт.д становится максимальным, но меньшим единицы, а при увеличении Rн до бесконечно большого значения он убывает до нуля. Следовательно, такой каскад не дает усиления тока, а наоборот несколько ослабляет его.

Коэффициент усиления по напряжению Кб каскада с ОБ на единицу больше, чем у каскада с ОЭ (при равных параметрах транзистора и Rн):

Соответственно для каскада с общим затвором на ПТ коэффициент усиления напряжения

Коэффициент усиления по мощности каскада с ОБ (4)

В схеме с ОБ коэффициент усиления мощности Крб больше, чем в схеме с ОЭ.

Входное сопротивление транзистора

достаточно мало вследствие потребления большого тока от источника сигнала, и практически не зависит от Rн. Оно существенно меньше, чем входное сопротивление транзистора в каскаде с ОЭ: у маломощных транзисторов Rвх.б составляет несколько десятков Ом, а у мощных — меньше 1 Ом.

При включении ПТ по схеме с ОЗ входное сопротивленяе Rвх.з=1/S.

Выходное сопротивление каскада с ОБ несколько больше, чем у каскада с ОЭ:

Значение верхней границы полосы пропускания f'в каскада с ОБ и каскада с ОЗ наибольшее по сравнению с другими схемами и приближается к fт. С увеличением Rи (при Rвх=const) действие ООС усиливается, что способствует расширению полосы пропускания, верхнюю границу которой можно принять равной fт.

  1. Усилительный каскад на полевом транзисторе в схеме включения с общим истоком. Принцип работы. Назначение элементов электрической схемы. Расчет рабочей точки. Схема замещения каскада. Расчет параметров по постоянному и переменному току. Особенности параметров.

Среди усилительных каскадов, выполненных на полевых транзисторах, наиболее широкое применение получил каскад, в котором ПТ включен по схеме с общим истоком. На рисунке 2.29 приведена принципиальная схема наиболее распространенного варианта каскада с ОИ с цепью автосмещения, служащей для обеспечения режима работы ПТ по постоянному току.

Е сли БТ разделяется на два типа - p-n-p и n-p-n, отличающиеся противоположными полярностями питающих напряжений, то разновидностей ПТ существует, по меньшей мере, шесть. Рассмотрим схему рисунка 2.29, где изображен ПТ с p-n переходом и n-каналом. Анализ каскадов на других типах ПТ будет отличаться лишь в незначительных деталях.

Выходные статические вольтамперные характеристики (ВАХ) ПТ представлены на рисунке 2.30. В отличие от БТ, у ВАХ ПТ имеется значительная область управляемого сопротивления, в которой возможно использование ПТ в качестве электронного управляемого резистора. В качестве усилительного элемента ПТ используется в области усиления.

В отсутствие входного сигнала каскад работает в режиме покоя. С помощью резистора задается напряжение смещения , которое определяет ток покоя стока .

Координаты рабочей точки определяются соотношениями:

где - граница области управляемого сопротивления на выходных статических характеристиках транзистора (рисунок 2.30),

где - сопротивление нагрузки каскада по переменному току;

где - напряжение отсечки, - ток стока при .С помощью резистора , помимо задания необходимого напряжения смещения, в каскад вводится ООС , способствующая термостабилизации (у ПТ как и у БТ наблюдается сильная температурная зависимость параметров), на частотах сигнала эта ОС устраняется путем включения .