
16 Вопрос:
Конические сечения
Плоские кривые линии, получаемые при пересечении поверхности прямого кругового конуса плоскостями, различно расположенными по отношению к оси конуса, называют кривыми конических сечений (коническое сечение).
В зависимости от положения секущей плоскости линиями сечения конической поверхности могут быть: эллипс, парабола, гипербола, а в частных случаях: окружность, прямая, две пересекающиеся прямые и точка.
Конические сечения* - линия пересечения кругового конуса с плоскостями, не проходящими через его вершину. Конические сечения могут быть трех типов:
а) - секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения - замкнутая овальная кривая - эллипс, в частности, когда плоскость перпендикулярна оси конуса, - окружность;
б) - секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая - парабола, целиком лежащая в одной полости;
в) - секущая плоскость пересекает обе полости конуса; линия пересечения гипербола - состоит из двух одинаковых незамкнутых, простирающихся в бесконечность ветвей, лежащих на обеих полостях конуса
17 Вопрос:
Важное место в начертательной геометрии занимает решение позиционных задач. Рассмотрим способы решения позиционных задач с участием кривых линий и поверхностей. Эти задачи называют обобщенными. Рассмотренные ранее позиционные задачи с участием прямых линий и плоскостей являются их частным случаем.
Эту задачу решают в три этапа которые повторяют в обобщенном виде этапы построения Алгоритм построения:
Заключаем кривую во вспомогательную поверхность Г: а принадлежит Г; точки пересечения прямой с плоскостью.
Строим линию m пересечения данной поверхности и
вспомогательной m = Ф пересекает Г.
Отмечаем точки L1 пересечения данной линии (а) и построенной
(m), которые являются искомыми точками пересечения: L = a пересекает m.
В качестве вспомогательной поверхности в общем случае образуется проецирующая цилиндрическая поверхность. Если данная плоская линия имеет одной своей проекцией прямую, то в качестве вспомогательной плоскости рекомендуется брать проекционную плоскость.
При пересечении прямой c поверхностью, в зависимости от вида поверхности, можно использовать плоскости частного и общего положения.
18 Вопрос:
При построении линии пересечения поверхностей вращения – конуса и цилиндра – могут быть различные случаи. Это положение подтверждается теоремой Монжа: если две поверхности второго порядка описаны вокруг третьей поверхности второго порядка, то они пересекаются по двум кривым второго порядка. Такие поверхности имеют две точки, в которых они касаются друг друга, или говорят, что поверхности имеют двойное прикосновение. Линия пересечения двух поверхностей вращения, имеющих двойное прикосновение, распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки прикосновения. Две цилиндрические поверхности вращения одного диаметра касаются друг друга в точках А и В или имеют общие касательные, плоскости Ф1 и Ф2. Линия АВ занимает фронтально проецирующее положение, поэтому плоскости кривых пересечения будут фронтально проецирующими. Эллипсы ACBF и AEBD изображаются отрезками прямых на фронтальной плоскости проекций и окружностями, совпадающими с вырожденной проекций вертикального цилиндра, на горизонтальной плоскости проекций. Это положение широко используется при изображении пересекающихся труб или отверстий одного диаметра.
в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий.
Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечеиии ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность.
Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям
Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности).
Сформулируем общее правило построения линии пересечения поверхностей:
выбирают вид вспомогательных поверхностей;
строят линии пересечения вспомогательных поверхностей с заданными поверхностями;
находят точки пересечения построенных линий и соединяют их между собой.