
- •1.Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.
- •2.Трансформаторы. Назначение, устройство. Физические процессы в трансформаторе при хх и кз. Основные уравнения трансформатора.
- •3.Приведенный трансформатор. Работа трансформатора под нагрузкой. Основные уравнения, векторные диаграммы.
- •4.Электрическая схема замещения трансформатора. Определение параметров схемы замещения из опытов хх и кз.
- •6.Трехфазные трансформаторы: групповой и стержневой. Схемы и группы соединений обмоток трехфазных трансформаторов. Особенности работы.
- •7.Потери мощности в трансформаторе. Коэффициент полезного действия трансформатора. Влияние характера нагрузки на величину кпд. Эксплуатационные характеристики трансформатора.
- •8.Многообмоточные трансформаторы. Основные уравнения трехобмоточного трансформатора. Соотношение между мощностями обмоток трехобмоточного трансформатора.
- •9.Векторная диаграмма трехобмоточного тм.
- •11.Измерительные трансформаторы. Назначение. Особенности конструкций. Особенности режимов работы. Погрешности. Классы точности.
- •12.Трансформаторы специального назначения: для преобразования числа фаз; для преобразования частоты; пик-трансформаторы, сварочные, трансформаторы с подмагничиванием шунтов (трпш), автотрансформаторы.
- •13.Упрощенная электрическая схема замещения трансформатора. Определение параметров упрощенной схемы замещения.
- •14.Упрощенная векторная диаграмма трансформатора.
- •15.Реакция якоря в синхронной машине.
- •16.Параллельная работа синхронной машины с мощной сетью.
- •17.Характеристики синхронного генератора.
- •18.Угловые характеристики синхронного генератора.
- •19.Векторные диаграммы синхронного генератора.
- •20.Векторная диаграмма синхронного двигателя
- •21.Втягивание в синхронизм синхронного двигателя.
- •22.Отношение кз в синхронной машине. Опытное определение полного синхронного сопротивления.
- •23.Способы пуска синхронных двигателей.
- •24.Потери мощности в синхронном двигателе. Кпд двигателя.
- •25.Принцип действия синхронного двигателя.
- •26.Синхронный генератор.
- •27.Регулирование частоты вращения ад с кз ротором
- •28.Пуск ад с фазным ротором
- •29.Регулирование частоты вращения ад с фазным ротором.
- •30.Пуск в ход асинхронных двигателей с кз ротором и фазным ротором
- •31.Асинхронные двигатели с улучшенными пусковыми характеристиками Глубокопазные двигатели, двигатели с двойной клеткой на роторе.
- •32.Однофазный асинхронный двигатель. Устройство, принцип действия. Способы пуска. Разновидности.
- •33.Устройство,принцип действия, режимы работы ам
- •35.Трехфазная ам при вращающемся роторе. Уравнения намагничивающих сил, токов и напряжений.
- •3 6.Электрическая схема замещения асинхронной машины.
- •37.Векторные диаграммы для режимов двигателя, генератора, электромагнитного тормоза.
- •38.Энергетические диаграммы асинхронной машины (двигатель, генератор, эм тормоз)
- •39.Зависимость кпд от полезной мощности на валу в режиме двигателя.
- •40.Электромагнитный момент ам. Начальный пусковой, максимальный и номинальный моменты.
- •41.Уравнение моментов. Механическая характеристика ам. Статическая устойчивость работы ам в режиме двигателя.
- •42.Электрическая схема замещения ам. Определение параметров схемы замешения из опытов хх и кз.
- •43.Создание вращающегося магнитного поля. Эллиптические, круговые и пульсирующие м. Поля. Деформация и реверсирование вращающихся полей.
- •4 4.Рабочие характеристики асинхронного двигателя.
- •45.Устройство и принцип действия машины постоянного тока (ген., двигатель).
- •46.Генератор постоянного тока с независимым возбуждением.
- •47.Реакция якоря в машинах постоянного тока.
- •48.Генератор постоянного тока параллельного возбуждения.
- •49.Двигатель постоянного тока параллельного возбуждения.
- •50.Генератор постоянного тока смешанного возбуждения.
- •51.Электромагнитный момент машины постоянного тока.
- •52.Потери и кпд машины постоянного тока.
- •53.Эдс обмотки якоря в машине постоянного тока.
- •54.Двигатель постоянного тока последовательного возбуждения.
46.Генератор постоянного тока с независимым возбуждением.
Схема включения ГПТ независимого возбуждения представлена ниже. Реостат, включенный в цепь возбуждения дает возможность регулировать ток в обмотке возбуждения, а следовательно и основной магнитный поток машины.
|
ХХХ имеет вид неширокой петли гистерезиса. Средняя штриховая линия есть характеристика, по которой определяют коэффициент насыщения магнитной цепи. |
|
Падающий характер внешней характеристики обусловлен размагничивающим влиянием реакции якоря и падением напряжения в цепи обмотки якоря. |
|
На регулировочной характеристике видно, как нудно увеличивать ток возбуждении для поддержания постоянным напряжения на выходе. |
|
Данная характеристика КЗ получена для ГПТ независимого возбуждения. Для остальных видов возбуждения ее снятие возможно только при питании ОВ от постороннего источника. |
Основной недостаток генераторов независимого возбуждения – этот необходимость в постороннем источнике постоянного тока – возбудителе. Однако возможность регулирования напряжения в широких пределах, а также сравнительно жесткая внешняя характеристика этого генератора являются его достоинствами.
47.Реакция якоря в машинах постоянного тока.
При
холостом ходе магнитный поток в машине
создается только НС
обмотки возбуждения. В этом случае
магнитный поток
при неизменном воздушном зазоре между
якорем и сердечником главного полюса
(что характерно для многих машин
постоянного тока) распределяется
симметрично относительно продольной
оси машин.
При работе машины под нагрузкой по обмотке якоря проходит ток, и НС якоря создает свое магнитное поле. Воздействие поля якоря на магнитное поле машины называют реакцией якоря. Магнитный поток Фaq , созданный НС якоря Faq в двухполюсной машине при установке щеток на нейтрали направлен по поперечной оси машины, поэтому магнитное поле якоря называют поперечным. В результате действия потока Фaq симметричное распределение магнитного поля машины искажается, и результирующий поток Фрез оказывается сосредоточенным в основном у краев главных полюсов. При этом физическая нейтраль б-б (линия, соединяющая точки окружности якоря, в которых индукция равна нулю) смещается относительно геометрической нейтрали (а-а) на некоторый угол β. В генераторах физическая нейтраль смещается по направлению вращения якоря; в двигателях – против направления вращения.
Продольная реакция якоря:
|
Если же щетки сдвинуты с линии геометрической нейтрали на 90 электрических градусов, то ось поля якоря направлена по продольной оси индуктора. Это поле, в зависимости от направления тока якоря оказывает на поле индуктора намагничивающее или размагничивающее действие. В общем случае, если щетки сдвинуты с геометрической нейтрали на какой-либо угол, отличный от 900, то в машине присутствуют оба вида реакции якоря. |
Реакция якоря оказывает неблагоприятное влияние на работу машины постоянного тока:
физическая нейтраль смещается относительно геометрической нейтрали на некоторый угол, что ухудшает коммутацию коллекторной машины;
результирующий магнитный поток машины при насыщенной магнитной цепи уменьшается, а значит, уменьшается ЭДС Е, индуктированная в обмотке якоря при нагрузке, по сравнению с ЭДС Е0 при холостом ходе;
в кривой распределения индукции
в воздушном зазоре под краями главных полюсов возникают пики, способствующие образованию в машине кругового огня.