
- •1.Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.
- •2.Трансформаторы. Назначение, устройство. Физические процессы в трансформаторе при хх и кз. Основные уравнения трансформатора.
- •3.Приведенный трансформатор. Работа трансформатора под нагрузкой. Основные уравнения, векторные диаграммы.
- •4.Электрическая схема замещения трансформатора. Определение параметров схемы замещения из опытов хх и кз.
- •6.Трехфазные трансформаторы: групповой и стержневой. Схемы и группы соединений обмоток трехфазных трансформаторов. Особенности работы.
- •7.Потери мощности в трансформаторе. Коэффициент полезного действия трансформатора. Влияние характера нагрузки на величину кпд. Эксплуатационные характеристики трансформатора.
- •8.Многообмоточные трансформаторы. Основные уравнения трехобмоточного трансформатора. Соотношение между мощностями обмоток трехобмоточного трансформатора.
- •9.Векторная диаграмма трехобмоточного тм.
- •11.Измерительные трансформаторы. Назначение. Особенности конструкций. Особенности режимов работы. Погрешности. Классы точности.
- •12.Трансформаторы специального назначения: для преобразования числа фаз; для преобразования частоты; пик-трансформаторы, сварочные, трансформаторы с подмагничиванием шунтов (трпш), автотрансформаторы.
- •13.Упрощенная электрическая схема замещения трансформатора. Определение параметров упрощенной схемы замещения.
- •14.Упрощенная векторная диаграмма трансформатора.
- •15.Реакция якоря в синхронной машине.
- •16.Параллельная работа синхронной машины с мощной сетью.
- •17.Характеристики синхронного генератора.
- •18.Угловые характеристики синхронного генератора.
- •19.Векторные диаграммы синхронного генератора.
- •20.Векторная диаграмма синхронного двигателя
- •21.Втягивание в синхронизм синхронного двигателя.
- •22.Отношение кз в синхронной машине. Опытное определение полного синхронного сопротивления.
- •23.Способы пуска синхронных двигателей.
- •24.Потери мощности в синхронном двигателе. Кпд двигателя.
- •25.Принцип действия синхронного двигателя.
- •26.Синхронный генератор.
- •27.Регулирование частоты вращения ад с кз ротором
- •28.Пуск ад с фазным ротором
- •29.Регулирование частоты вращения ад с фазным ротором.
- •30.Пуск в ход асинхронных двигателей с кз ротором и фазным ротором
- •31.Асинхронные двигатели с улучшенными пусковыми характеристиками Глубокопазные двигатели, двигатели с двойной клеткой на роторе.
- •32.Однофазный асинхронный двигатель. Устройство, принцип действия. Способы пуска. Разновидности.
- •33.Устройство,принцип действия, режимы работы ам
- •35.Трехфазная ам при вращающемся роторе. Уравнения намагничивающих сил, токов и напряжений.
- •3 6.Электрическая схема замещения асинхронной машины.
- •37.Векторные диаграммы для режимов двигателя, генератора, электромагнитного тормоза.
- •38.Энергетические диаграммы асинхронной машины (двигатель, генератор, эм тормоз)
- •39.Зависимость кпд от полезной мощности на валу в режиме двигателя.
- •40.Электромагнитный момент ам. Начальный пусковой, максимальный и номинальный моменты.
- •41.Уравнение моментов. Механическая характеристика ам. Статическая устойчивость работы ам в режиме двигателя.
- •42.Электрическая схема замещения ам. Определение параметров схемы замешения из опытов хх и кз.
- •43.Создание вращающегося магнитного поля. Эллиптические, круговые и пульсирующие м. Поля. Деформация и реверсирование вращающихся полей.
- •4 4.Рабочие характеристики асинхронного двигателя.
- •45.Устройство и принцип действия машины постоянного тока (ген., двигатель).
- •46.Генератор постоянного тока с независимым возбуждением.
- •47.Реакция якоря в машинах постоянного тока.
- •48.Генератор постоянного тока параллельного возбуждения.
- •49.Двигатель постоянного тока параллельного возбуждения.
- •50.Генератор постоянного тока смешанного возбуждения.
- •51.Электромагнитный момент машины постоянного тока.
- •52.Потери и кпд машины постоянного тока.
- •53.Эдс обмотки якоря в машине постоянного тока.
- •54.Двигатель постоянного тока последовательного возбуждения.
28.Пуск ад с фазным ротором
П
ри
пуске АД должны соблюдаться следующие
требования.
1) АД должен развивать достаточно большой пусковой момент, достаточный для преодоления статического момента сопротивления на валу. 2) Величена пускового тока должна быть ограничена такой величиной, чтобы не происходило повреждения АД и нарушения нормального режима работы сети. Помимо пусковых значений тока и момента пусковые свойства двигателей оцениваются еще и такими показателями: продолжительность и плавность пуска, сложность пусковой операции, ее экономичность (стоимость и надежность пусковой аппаратуры и потери энергии в ней). Наличие контактных колец у двигателей с фазным ротором позволяет подключить к обмотке ротора пусковой реостат (ПР). При этом активное сопротивление цепи ротора увеличивается до значения R2=r2’+rд’, где rд’ — электрическое сопротивление пускового реостата, приведенное к обмотке статора.
П
усковые
свойства двигателя определяются в
первую очередь значением пускового
тока Iп
или его кратностью IП/Iном
и значением пускового момента Мп
или его кратностью Мп/МНОМ.
В начальный момент пуска скольжение
s=l,
поэтому, пренебрегая током хх,
пусковой ток можно определить:
В процессе пуска двигателя ступени ПР переключают таким образом, чтобы ток ротора оставался приблизительно неизменным, а среднее значение пускового момента было близко к наибольшему. Так, в начальный момент пуска (первая ступень реостата) пусковой момент равен Мпмакс. По мере разгона АД его момент уменьшается по кривой 1. Как только значение момента уменьшится до значения Mпmin, рычаг реостата переводят на вторую ступень и сопротивление реостата уменьшается. Теперь зависимость М=f(s) выражается кривой 2 и пусковой момент двигателя вновь достигает Мпмакс. Затем ПР переключают на третью и на четвертую ступени (кривые 3 и 4). После того как электромагнитный момент двигателя уменьшится до значения, равного значению противодействующего момента на валу двигателя, частота вращения ротора достигнет установившегося значения и процесс пуска двигателя будет закончен. В течение всего процесса пуска значение пускового момента остается приблизительно постоянным, равным Мп.ср. Следует иметь в виду, что при слишком быстром переключении ступеней реостата пусковой ток может достигнуть недопустимо больших значений.
29.Регулирование частоты вращения ад с фазным ротором.
Ч астота вращения ротора асинхронного двигателя
Из этого выражения следует, что частоту вращения ротора для фазных АД можно использовать все те же способы регулирования, как и для АД с кз ротором:
р
егулирование
частоты вращения изменением подводимого
напряжения, нарушением симметрии
подводимого напряжения, изменением
частоты тока в обмотке статора, изменением
числа полюсов обмотки статора. Ниже
рассмотрим способы специфичные для АД
с фазным ротором.
Регулирование
частоты
вращения изменением активного
сопротивления в цепи ротора.
В цепь ротора включается регулировочный
реостат, подобный пусковому, но
рассчитанный на длительный режим работы.
Мех. Хар-ки АД при различных значениях
активного сопротивления цепи ротора
показывают, что с увеличением активного
сопротивления цепи ротора возрастает
скольжение, соответствующее заданному
статическому моменту. Частота вращения
ротора при этом уменьшается. Способ
обеспечивает регулирование частоты
вращения в широком диапазоне вниз от
синхронной частоты вращения. Электрические
потери в цепи ротора возрастают, но
только из-за потерь в регулировочном
реостате. Этот способ более благоприятный
по сравнению с предыдущим, несмотря на
снижение КПД АД.
Регулирование
частоты
вращения введением в цепь ротора
добавочной ЭДС.
В цепь ротора вводят от постороннего
источника добавочную ЭДС, имеющую
частоту, одинаковую с основной ЭДС
ротора, и направленную согласно или
встречно с ней. Векторная диаграмма для
рассматриваемой ситуации изображена
на рис. а. При введении в цепь вращающегося
ротора добавочной ЭДС
,
направленной встречно ЭДС
,
ток в обмотке ротора в первый момент
времени уменьшится. В результате
вращающий электромагнитный момент М
станет меньше статического момента Мст
и ротор начнет замедлять свою частоту
вращения. Аналогично можно показать,
что если в цепь ротора вводится добавочная
ЭДС, направленная согласно с ЭДС
,
то частота вращения ротора увеличивается.
Таким образом, при наличии соответствующего
источника (преобразователя частоты),
включенного в цепь ротора, можно плавно
и экономично регулировать частоту
вращения ротора АД.