
- •1.История развития статистики как науки.
- •2.Понятие предмета и метода статистики.
- •4. Теоретические основы статистики как науки. Отрасли статистики.
- •5.Статистическое наблюдение.Этапы его проведения. Общая характеристика.
- •6.Методология статистического наблюдения: цель, объект, единица, программа, место и время наблюдения.
- •7.Формы,виды и способы наблюдений. Характеристика.
- •8.Ошибки ст наблюдения.
- •9.Сводка и группировка статистических данных. Задачи, решаемые с помощью метода группировок.
- •10.Виды ст группировок. Хар-ка. Примеры.
- •11.Ряды распределения. Их виды. Построение дискретных и интервальных вар рядов.
- •12. Графический анализ вариационных рядов.
- •13. Статистические таблицы. Характеристика и классификация.
- •14.Правила построения и анализ статистических таблиц.
- •15.Понятия и виды статистических показателей.
- •16.Абсол ст показатели.
- •17.Отн пок. Их виды и взаимосвязь.
- •18. Средние показатели. Их сущность и значение.
- •19. Виды средних и способы их вычисления.
- •20. Средняя арифметическая и гармоническая. Правила выбора формы средней.
- •Виды средней арифметической величины
- •Основные свойства средней арифметической
- •21. Структурные средние. Общая характеристика, анализ и интерпретация.
- •Квартиль
- •22.Понятие вариации и её значение в экономических исследованиях.
- •23.Абсолютные показатели вариации.
- •24. Относительные показатели вариации.
- •25. Виды дисперсий и правила их сложения.
- •26. Понятие о закономерностях распределения. Изучение формы распределения.
- •Понятие о закономерностях статического распределения.
- •27. Выборочное наблюдение. Понятие, характеристика, значение в соц-эк исследованиях.
- •28. Способы, методы и виды формирования выборочной совокупности.
- •29. Ошибки выборочного наблюдения. Средняя и предельная.
- •30. Определение оптимального объема выборки. (формулы в тетради)
- •31. Оценка результатов выборочного наблюдения и распространение их на генеральную совокупность.
- •32. Малая выборка: понятие, характеристика, сфера применения. Ошибка малой выборки.
- •33. Основные понятия корреляционного и регрессионного анализа.
- •34. Понятия взаимосвязанных признаков как предмет статистического изучения связи. Задачи статистического изучения связи.
- •35. Выбор формы управления регрессии для анализа экономических явлений. Оценка параметров управления регрессии.
- •Оценка параметров уравнения регреcсии. Пример
- •36. Статистические характеристики тесноты связи: эмпирическое корреляционное отношение, линейный коэффициент корреляции, коэффициент детерминации.
- •37. Методы изучения связи альтернативных признаков. Коэффициенты ассоциации, контингенции и взаимной сопряженности. Анализ и интерпретация.
- •38.Изучение зависимости между количественными признаками. Ранговые показатели связи.
- •39. Понятие и классификация рядов динамики
- •40. Правила построения ряда динамики.
- •41. Показатели анализа ряда динамики
- •42. Структура ряда динамики. Проверка ряда на наличие тренда.
- •43. Анализ сезонных колебаний.
- •44. Элементы прогнозирования и интерполяции.
- •45. Понятие об индексах. Значение индексов в анализе социально- экономических явлений.
- •46. Общий порядок построения индексов. Отчётные и базисные данные. Сопоставление с базой как основа индексного анализа, формы (относительная и разностная) этого сопоставления.
- •47. Индексы индивидуальные и общие. Их классификация.
- •48. Сводные индексы в агрегатной и средних формах.(тетрадь) Сводные индексы
- •Агрегатные индексы
- •49. Индексы среднего уровня вторичного признака (индекс переменного состава, индекс постоянного состава, индекс структурных сдвигов). Их взаимосвязь, порядок построения, соц-эк смысл.
- •5. Индексы постоянного состава и их практическое применение
- •6. Индекс структурных сдвигов
- •50. Важные экономические индексы, их взаимосвязи.
11.Ряды распределения. Их виды. Построение дискретных и интервальных вар рядов.
Ряд распределения – упорядоченная совокупность значений признака.
Бывают ряды распределения:
-Качественных признаков (атрибутивные ряды распределения);
-Количественных признаков (вариационные ряды распределения).
Любой ряд состоит из 2 элементов:Вариантов,частот
Атрибутивные ряды характеризуют распределение качественных признаков,
например распределение рабочих по полу, профессии, образованию.
Вариационные ряды обычно упорядочиваются в соответствии с увеличением
значений количественного признака.
Они бывают дискретные и интервальные. Варианты дискретного ряда – это
дискретно прерывно изменяющиеся значения признак, обычно это результат
подсчета.
Интервальные ряды предназначены для анализа распределения непрерывно
изменяющегося признака, значение которого чаще всего регистрируется путем
измерения или взвешивания. Варианты такого ряда – это группировка.
12. Графический анализ вариационных рядов.
Наиболее употребительными графиками для изображения вариационных рядов являются полигон, гистограмма и кумулята.
Полигон используют для изображения дискретных рядов. На оси абсцисс откладывают варианты, а на оси ординат значения частот. Далее в этой системе координат строят точки, координатами которых являются пары соответствующих чисел из вариационного ряда. Полученные точки последовательно соединяют отрезками прямой. Крайнюю "левую" точку соединяют с точкой оси абсцисс, абсцисса которой находится слева от рассматриваемой точки на таком же расстоянии, как абсцисса ближайшей справа точки. Аналогично крайнюю "правую" точку также соединяют с точкой оси абсцисс.
Кумуляту исп с для интерв рядов. Для ее построения необходимо вычислить накопленные частоты. На оси абсцисс откладывают верхние границы интервала,на оси ординат - накопленные частоты. Далее строят точки, абсциссы которых равны вариантам (в случае дискретных рядов) или верхним границам интервалов (в случае интервальных рядов), а ординаты - соответствующим частотам (накопленным частотам). Эти точки соединяют отрезками прямой. Полученная ломаная и является кумулятой.
Гистограмму используют для изображения интервальных рядов. Для построения гистограммы по данным вариационного ряда с равными интервалами, на оси абсцисс откладывают значения аргумента, а на оси ординат - значения частот. Далее строят прямоугольники, основаниями которых служат отрезки оси абсцисс, длины которых равны длинам интервалов, а высотами - отрезки, длины которых пропорциональны частотам или относительным частотам соответствующих интервалов. Если построена гистограмма интервального распределения, то полигон того же распределения можно получить, если соединить прямолинейными отрезками середины верхних оснований прямоугольников.
13. Статистические таблицы. Характеристика и классификация.
Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.
Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы. По характеру подлежащего статистические таблицы подразделяются на простые, групповые и комбинационные. В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом. В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам. В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам.