Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_statistike_3_semestr.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
1.11 Mб
Скачать

40. Правила построения ряда динамики.

1. Периодизация развития, т.е. расчленение его во времени на однородные этапы, в пределах которых показатель подчиняется одному закону развития. По существу, это типологическая группировка во времени.

2. Статистические данные должны быть сопоставимы по территории, кругу охватываемых объектов, единицам измерения, времени регистрации, ценам, методологии расчета.

3. Величины временных интервалов должны соответствовать интенсивности изучаемых процессов. Чем больше вариация уровней во времени, тем чаще следует делать замеры, соответственно для стабильных процессов интервалы можно увеличить.

4. Числовые уровни рядов динамики должны быть упорядоченными во времени.  Не допускается анализ рядов с пропусками отдельных уровней, если же такие пропуски неизбежны, то их восполняют условными расчетными значениями.

41. Показатели анализа ряда динамики

При изучении явления во времени перед исследователем встает проблема описания интенсивности изменения и расчета средних показателей динамики. Решается она путем построения соответствующих показателей. Для характеристики интенсивности изменения во времени такими показателями будут: 1) абсолютный прирост, 2) темпы роста, 3) темпы прироста, 4) абсолютное значение одного процента прироста.

Расчет показателей динамики представлен в следующей таблице.

Показатель

Базисный

Цепной

Абсолютный прирост   *

Yi-Y0

Yi-Yi-1

Коэффициент роста (Кр)

Y: Y0

Yi : Yi-1

Темп роста (Тр)

(Y: Y0)×100

(Y: Yi-1)×100

Коэффициент прироста (Кпр )**

Темп прироста (Тпр)

Абсолютное значение одного процента прироста (А)

*    ** 

В случае, когда сравнение проводится с периодом (моментом) времени, начальным в ряду динамики, получают базисные показатели. Если же сравнение производится с предыдущим периодом или моментом времени, то говорят о цепных показателях.

42. Структура ряда динамики. Проверка ряда на наличие тренда.

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

Ø тренд – основная тенденция развития ряда, обусловливающая увеличение или снижение его уровней;

Ø  циклические (периодические) колебания (в том числе сезонные);

Ø  случайные колебания.

Проверка ряда динамики на наличие в нем тренда возможна несколькими способами (в порядке усложнения):

1. Графический метод, когда на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально.

2. Метод средних, согласно которому изучаемый ряд динамики делится на два равных подряда, для каждого из которых определяется средняя величина   и  . И если они различаются существенно (более 10%), то признается наличие тренда.

3. Метод Кокса и Стюарта, согласно которому ряд динамики делится на три равные по числу уровней группы и существенное различие выявляется между средними уровнями первой и третьей  групп. Если общее число уровней не делится на три, то надо добавить недостающий уровень или исключить излишний.

4. Метод Валлиса и Мура, согласно которому наличие тренда признается в том случае, если ряд не содержит либо содержит в приемлемом количестве фазы, т.е. перемену знака при определении абсолютного изменения цепным способом.

5.    Метод серий, согласно которому каждый уровень ряда считается принадлежащим к одному из двух типов, например типу А – меньше медианного или среднего значения или типу В – больше его. Затем в образовавшейся последовательности типов устанавливается число серий R. Они называются последовательностью уровней одинакового типа, которая граничит с уровнями другого типа. Если в ряду динамики общая тенденция к росту или снижению уровней отсутствует, то число серий является случайной величиной, распределенной приближенно по нормальному закону (при n>30) или по распределению Стьюдента (при n<30). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале

где t – коэффициент доверия для принятого уровня вероятности при нормальном законе или со степенью свободы k = (n - 1) при распределении Стьюдента;

– среднее число серий в ряду, определяемое по формуле:  – среднее квадратическое отклонение числа серий в ряду, определяемое по формуле  .

            Подставляя среднее число серий и его среднее квадратическое отклонение в доверительный интервал, получим его развернутое значение в виде

.

Значит, с заданной вероятностью тренд имеет место, если установленное число серий ряда не входит в доверительный интервал, и тренд отсутствует, если установленное число серий находится в этом интервале.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]