
- •Возникновение и развитие микробиологии. Работы Левенгука, Бейеринга, Коха. Роль Луи Пастера в формировании микробиологии.
- •Морфология микроорганизмов. Основные формы бактерий. Размеры. Микроскопические методы изучения микроорганизмов. Разновидности световой микроскопии.
- •Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.
- •Цитоплазматическая мембрана и её производные (мезосомы, хроматофоры). Строение, функции и значение для микроорганизмов.
- •Капсула, её роль, химический состав, методы выявления, назвать капсуальные бактерии.
- •Нуклеоид. Репликация днк. Рибосомы.
- •Жгутики бактерий. Строение, химический состав, расположение. Методы выявления. Фимбрии и f – пили.
- •Покоящиеся формы бактерий. Споры и самообразования, прорастание спор. Свойства спор. Методы выявления, значения спор грибов и бактерий.
- •Положение микроорганизмов в природе. Прокариотные и эукариотные микроорганизмы: сходства и основные различия. Принципы классификации, геносистематика и классификация Берги.
- •16. Актиномицеты и родственные им организмы.
- •17. Риккетсии и хламидии.
- •18. Микоплазмы. Архебактерии.
- •19. Изменчивость микроорганизмов и её виды. Фенотипическая изменчивость. Привести примеры.
- •20. Мутации. Классификация. Механизм мутаций. Мутагенные факторы. Практическое применение мутаций.
- •21. Рекомбинации – обмен генетической информацией. Механизмы рекомбинаций у прокариот. Трансформация. Открытие явления трансформации. Опыты м. Гриффитса. Механизмы.
- •22. Трансдукция. Виды трансдукции. Механизмы. Роль умеренного бактериофага. Фаговая конверсия.
- •23. Конъюгация. Значение f, Hfr, f1 факторов. Механизмы образования донорских клеток.
- •24. Плазмиды. Виды плазмид. Роль плазмид в генной инженерии.
- •25. Культивирование бактерий. Чистые культуры микроорганизмов. Методы получения и значение. Основные типы питательных сред (по составу и физическому состоянию). Поверхностное и глубинное выращивание.
- •26. Рост и размножение бактерий. Кривая роста и размножения бактериальной популяции. Сбалансированный и несбалансированный рост. Периодическое и непрерывное культивирование. Синхронные культуры.
- •27. Действие химических факторов на микроорганизмы. Дезинфекция и антисептика.
- •28. Действие физических факторов на микроорганизмы.
- •30. Значение ферментов в жизнедеятельности микроорганизмов. Изучение ферментативной активности микроорганизмов. Примеры.
- •31. Особенности бактериального фотосинтеза. Фототрофные бактерии.
- •32. Хемосинтез и хемосинтезирующие бактерии. Нитрификация и денитрификация.
- •33. Дыхание микробов. Аэробное и анаэробное. Неполное окисление. Роль атф и способы её образования.
- •34. Брожение как один из способов получения энергии. Пути превращения глюкозы до пировиноградной кислоты. Субстратное фосфорелирование.
- •35. Молочнокислое гомо- и гетероферментативное брожение. Возбудители.
- •36. Пропионовокислое брожение. Особенности процесса. Использование в производстве сыров.
- •37. Маслянокислое брожение: виды, возбудители. Работы л. Пастера.
- •38. Спиртовое брожение: химизм, возбудители. Низовые и верховые дрожжи. Значение работ Луи Пастера.
- •39. Фиксация молекулярного азота. Свободноживущие и симбиотические азотофиксирующие микроорганизмы.
- •40. Аммонификация белковых веществ и других органических азотсодержащих соединений. Возбудители процесса.
- •41. Превращение микроорганизмами соединений серы. Сульфатредукция и сульфатредуцирующие бактерии.
- •43. Микрофлора почвы, воды и воздуха. Санитарная оценка воды и воздуха. Коли-литр и коли-индекс.
- •44. Взаимоотношение микроорганизмов друг с другом. Симбиотические и конкурентные. Антагонизм, его формы. Паразитизм и хищничество.
- •45. Взаимоотношение микроорганизмов и растений. Ризосферная и эпифитная микрофлоры. Микоризы. Бактериозы.
- •46. Понятие об инфекционном процессе, его формы. Возникновение и течение. Возможные исходы. Патогенность и вирулентность. Факторы патогенности. Единицы вирулентности.
- •47. Нормальная микрофлора тела человека. Гнотобиология.
- •48. Обща характеристика вирусов, формы их существования. Происхождение. Строение и химический состав вириона. Типы симметрии вирусных частиц. Классификация вирусов.
- •49. Система «вирус-клетка». Две формы взаимодействия вируса с клеткой: продуктивная и интегративная. Общие представления о механизмах при репродукции вирусов.
- •50. Пикорновирусы. Репродуктивный цикл: трансляция рнк, синтез белков и образование зрелых вирионов. Парвовирусы.
- •52. Вирусы с негативным рнк-геном. Структурная организация и репродукция рабдовирусов, ортомиксовирусов и парамиксовирусов.
- •Группы риска
- •54. Вирус гепатита в. Особенности структурной организации вируса. Транскрипция вирусной рнк и репликация на основе обратной транскрипции полного рнк транскрипта.
- •55. Вирусы группы оспа и осповакцины.
- •56. Паповавирусы, герпевирусы и аденовирусы.
- •57. Бактериофаги: основные морфологические формы, структура фагов. Вирулентные и умеренные фаги. Этапы взаимодействия фага с клеткой.
- •59. Вирусы гепатита а. Болезнь Боткина.
- •61. Культивирование и индикация вируса.
Покоящиеся формы бактерий. Споры и самообразования, прорастание спор. Свойства спор. Методы выявления, значения спор грибов и бактерий.
Покоящиеся (некультивируемые) формы бактерий
Специализированные анабиотические формы (такие как эндо- и экзоспоры, миксоспоры, цисты) известны лишь для ограниченного круга микроорганизмов. Однако как у спорообразующих микроорганизмов (Bacillus cereus) на фоне подавления спорообразования, так и у споронеобразующих (Pseudomonas carboxidoflava, Micrococcus luteus, Escherichia coli) бактерий внеклеточные микробные метаболиты, проявляющие свойства индукторов анабиоза, вызывают образование цистоподобных рефрактерных клеток (термин связан с переходом целой клетки в покоящуюся форму и увеличенной способностью данных клеток по сравнению с обычными сильно преломлять свет). В этих клетках снижение метаболической активности (гипометаболизм) сопровождается развитием резистентности к экстремальным воздействиям. Эти формы отличаются нерегистрируемым уровнем эндогенного дыхания, повышенной терморезистентностью и специфической ультраструктурой. По сравнению с вегетативными клетками, цистоподобные рефрактерные клетки обладают рядом особенностей ультраструктурной организации: у них снижена плотность рибосом в цитоплазме, цитоплазма приобретает мелкозернистую структуру, увеличена толщина клеточной стенки, в самой клеточной стенке появляются слоистость и некоторые плотные включения. Для споронеобразующих микроорганизмов цистоподобные рефрактерные клетки — единственная покоящаяся форма, способная сохраняться в течение нескольких лет, а для спорообразующих бактерий — альтернатива спорообразования. Поскольку рефрактерные клетки невозможно выявить с помощью традиционных бактериологических подходов, то в самое ближайшее время они могут создать серьёзную проблему при оценке их эпидемиологической и экологической значимости.
Споры бактерий
Прокариотические организмы бактерии обладают способностью к спорообразованию, которая заключается в том, что при наступлении условий, неблагоприятных для жизни, клетка частично теряет воду, объём и форму; под внешней мембраной образуется плотная сферическая оболочка.
В виде споры бактерия может выдерживать огромные механические, температурные и химические нагрузки. Например, некоторые споры выдерживают трёхчасовое кипячение или температуру жидкого азота. Также в виде споры более эффективно проходит расселение, потому что частично обезвоженная клетка имеет меньшую массу. Споры неустойчивы к ультрафиолету, как и вообще бактерии, и быстро погибают под таким излучением. Поэтому меньше всего бактерий — в высокогорной местности, а некоторые методы лечения инфекционных заболеваний, вызванных бактериальным возбудителем, предусматривают облучение пациента. Следует помнить, что споры у бактерий, в отличие от растений и грибов, служат не для размножения.
Споры бактерий окрашивают по методу Пешкова или по методу Марцелли.
Спорообразование у бактерий наблюдается в неблагоприятных условиях существования: при недостатке питания, высыхании среды, накоплении в ней вредных продуктов обмена, недостатке воздуха, резких колебаниях температуры и др. Сущность спорообразования заключается в уменьшении интенсивности процессов обмена у микробов и снижении их активности.
В процессе спорообразования цитоплазма теряет влагу, сгущается, собирается в определенном участие тела бактерии, облачается плотной непроницаемой для растворов оболочкой, в результате чего содержимое клетки принимает вид округлого или овального образования, которое называется спорой. В зависимости от размеров и расположения споры внешний вид микробной клетки либо не изменяется, либо принимает другую форму. Если спора образуется в центре клетки, то последняя принимает форму бочонка, лимона, веретена.
У столбнячной палочки спора образуется на конце, и поэтому клетка приобретает форму барабанной палочки. Споровые бактерии отличаются от вегетативных форм большой устойчивостью, легко переносят высушива-ние, замораживание, кратковременное или длительное кипячение, воздействие различных химических веществ. К спорообразующим бактериям относятся: возбудители сибирской язвы, столбняка, ботулизма, а также некоторые сапрофитные обитатели почвы. Спорообразующие патогенные бактерии часто встречаются в унавоженной почве. Они могут попадать в рану с землей.
Прорастание споры в оптимальных условиях осуществляется в течение 2-3 ч; процент проросших спор увеличивается после соответствующей предварительной обработки. Например, споры могут быть активированы кратковременным прогреванием.
• Прорастанию предшествует активация споры. Её инициируют различные химические вещества, повышение температуры и влажности. Под воздействием автолизинов происходит расщепление кортекса, поглощение воды и набухание. Внешне процесс проявляется увеличением («вздутием») споры и уменьшением коэффициента светопреломления. При этом в споре происходят глубокие физиологические изменения: усиливается дыхание, увеличивается активность ферментов, происходит выделение аминокислот, дипиколиновой кислоты и пептидов (потеря сухой массы споры может достигать 20-30%). В тот период спора утрачивает терморезистентность. Затем спора лопается в произвольном месте и из неё выходит вегетативная клетка, снабжённая у подвижных видов жгутиковым аппаратом.
Выявление спор бактерий
Окрашивание спор удается только в мазках.
Метод Вайсера—Хьюппе
1. Мазки окрашивают в растворе карболового фуксина или фуксина на анилиновой воде в термостате при 37 °С в закрытой посуде в течение нескольких часов.
2. Обесцвечивают 2,5 % раствором серной кислоты в течение 3 — 5 с и споласкивают 96 % спиртом, пока не перестанут отходить облачка красителя.
3. Докрашивают метиленовым синим 3 — 5 мин.
4. Ополаскивают в проточной воде, сушат на воздухе и изучают при масляной иммерсии.
Можно окрашивать карболовым фуксином, подогревая на огне мазок с красителем до появления паров 5 — 8 мин, но тогда дифференцировать следует 2,5 % серной кислотой в течение 10-20 сек.
Результат: споры окрашиваются в красный цвет, бактерии - в синий.
Метод Меллера
1. Фиксированные мазки помещают на 2 мин. в хлороформ.
2. Переносят в 5 % водный раствор хромовой кислоты на 2 — 10 мин.
3. Промывают в проточной воде и окрашивают карболовым фуксином 1 мин (стекло при этом подогревают на горелке до появления паров).
4. Дифференцируют в 5 % серной кислоте 5 с.
5. Хорошо промывают в проточной воде и подкрашивают водным раствором метиленового синего 3 мин.
6. Промывают в проточной воде, сушат и изучают при иммерсии.
Результат: опоры окрашиваются в красный цвет, бактерии — в синий.
Окраска малахитовым зеленым Шеффера-Фултона
1. Мазки, фиксированные над огнем, окрашивают 5 % водным раствором малахитового зеленого 5—10 мин.
2. Промывают в проточной воде.
3. Докрашивают 1 % водным раствором сафранина 30 с.
4. Промывают водой, сушат и изучают при масляной иммерсии.
Результат: споры окрашиваются в зеленый цвет, бактерии — в красный.
Метод Ожешки
На нефиксированный мазок наливают 0,5 % раствор соляной кислоты и подогревают над огнем 1 — 2 мин. С препарата сливают кислоту, тщательно промывают проточной водой, высушивают и после высыхания фиксируют на пламени. Фиксированный препарат окрашивают по методу Циля — Нильсена.
Результат: тела бактерий окрашиваются в синий цвет, споры — в красный.
Метод Битгера
Нефиксированный мазок обрабатывают 10 % формалином 10 мин, промывают проточной водой и высушивают. Окрашивают 3 мин аммиачным метиленовым синим (20 мл насыщенного спиртового раствора метиленового синего + 3 мл 98 % раствора аммиака + 80 мл дистиллированной воды), нагревая стекло над огнем до закипания красителя. Промывают проточной водой, докрашивают 0,5 % раствором сафранина 3—5 мин, промывают водой, высушивают и изучают при масляной иммерсии.
Результат: бактерии красные, споры синие.
Споры бактерий – это приспособление к выживанию в неблагоприятных условиях.
Плодовые тела несут споры, которыми грибы размножаются.
Споры бактериальные овальные или округлые образования, возникающие внутри палочковидных клеток — спороносных бактерий. Внутри каждой С. б. имеются компактное скопление дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК), Рибонуклеиновые кислоты (РНК) и белок. С. б. устойчивы к действию ядовитых веществ и др. отрицательных внешних факторов, что объясняется меньшим содержанием в них воды (15—20%), чем в вегетативных клетках, наличием 4—5 плотных труднопроницаемых оболочек и переходом ферментов в неактивное состояние. Устойчивость спор к высокой температуре (некоторые споры выдерживают кипячение в течение 30 и более мин) определяется присутствием в оболочках значительного количества кальциевой соли дипиколиновой кислоты. Попадая в свежую питательную среду, споры прорастают (полярно или экваториально), давая начало новым бактериальным клеткам.