
- •Возникновение и развитие микробиологии. Работы Левенгука, Бейеринга, Коха. Роль Луи Пастера в формировании микробиологии.
- •Морфология микроорганизмов. Основные формы бактерий. Размеры. Микроскопические методы изучения микроорганизмов. Разновидности световой микроскопии.
- •Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.
- •Цитоплазматическая мембрана и её производные (мезосомы, хроматофоры). Строение, функции и значение для микроорганизмов.
- •Капсула, её роль, химический состав, методы выявления, назвать капсуальные бактерии.
- •Нуклеоид. Репликация днк. Рибосомы.
- •Жгутики бактерий. Строение, химический состав, расположение. Методы выявления. Фимбрии и f – пили.
- •Покоящиеся формы бактерий. Споры и самообразования, прорастание спор. Свойства спор. Методы выявления, значения спор грибов и бактерий.
- •Положение микроорганизмов в природе. Прокариотные и эукариотные микроорганизмы: сходства и основные различия. Принципы классификации, геносистематика и классификация Берги.
- •16. Актиномицеты и родственные им организмы.
- •17. Риккетсии и хламидии.
- •18. Микоплазмы. Архебактерии.
- •19. Изменчивость микроорганизмов и её виды. Фенотипическая изменчивость. Привести примеры.
- •20. Мутации. Классификация. Механизм мутаций. Мутагенные факторы. Практическое применение мутаций.
- •21. Рекомбинации – обмен генетической информацией. Механизмы рекомбинаций у прокариот. Трансформация. Открытие явления трансформации. Опыты м. Гриффитса. Механизмы.
- •22. Трансдукция. Виды трансдукции. Механизмы. Роль умеренного бактериофага. Фаговая конверсия.
- •23. Конъюгация. Значение f, Hfr, f1 факторов. Механизмы образования донорских клеток.
- •24. Плазмиды. Виды плазмид. Роль плазмид в генной инженерии.
- •25. Культивирование бактерий. Чистые культуры микроорганизмов. Методы получения и значение. Основные типы питательных сред (по составу и физическому состоянию). Поверхностное и глубинное выращивание.
- •26. Рост и размножение бактерий. Кривая роста и размножения бактериальной популяции. Сбалансированный и несбалансированный рост. Периодическое и непрерывное культивирование. Синхронные культуры.
- •27. Действие химических факторов на микроорганизмы. Дезинфекция и антисептика.
- •28. Действие физических факторов на микроорганизмы.
- •30. Значение ферментов в жизнедеятельности микроорганизмов. Изучение ферментативной активности микроорганизмов. Примеры.
- •31. Особенности бактериального фотосинтеза. Фототрофные бактерии.
- •32. Хемосинтез и хемосинтезирующие бактерии. Нитрификация и денитрификация.
- •33. Дыхание микробов. Аэробное и анаэробное. Неполное окисление. Роль атф и способы её образования.
- •34. Брожение как один из способов получения энергии. Пути превращения глюкозы до пировиноградной кислоты. Субстратное фосфорелирование.
- •35. Молочнокислое гомо- и гетероферментативное брожение. Возбудители.
- •36. Пропионовокислое брожение. Особенности процесса. Использование в производстве сыров.
- •37. Маслянокислое брожение: виды, возбудители. Работы л. Пастера.
- •38. Спиртовое брожение: химизм, возбудители. Низовые и верховые дрожжи. Значение работ Луи Пастера.
- •39. Фиксация молекулярного азота. Свободноживущие и симбиотические азотофиксирующие микроорганизмы.
- •40. Аммонификация белковых веществ и других органических азотсодержащих соединений. Возбудители процесса.
- •41. Превращение микроорганизмами соединений серы. Сульфатредукция и сульфатредуцирующие бактерии.
- •43. Микрофлора почвы, воды и воздуха. Санитарная оценка воды и воздуха. Коли-литр и коли-индекс.
- •44. Взаимоотношение микроорганизмов друг с другом. Симбиотические и конкурентные. Антагонизм, его формы. Паразитизм и хищничество.
- •45. Взаимоотношение микроорганизмов и растений. Ризосферная и эпифитная микрофлоры. Микоризы. Бактериозы.
- •46. Понятие об инфекционном процессе, его формы. Возникновение и течение. Возможные исходы. Патогенность и вирулентность. Факторы патогенности. Единицы вирулентности.
- •47. Нормальная микрофлора тела человека. Гнотобиология.
- •48. Обща характеристика вирусов, формы их существования. Происхождение. Строение и химический состав вириона. Типы симметрии вирусных частиц. Классификация вирусов.
- •49. Система «вирус-клетка». Две формы взаимодействия вируса с клеткой: продуктивная и интегративная. Общие представления о механизмах при репродукции вирусов.
- •50. Пикорновирусы. Репродуктивный цикл: трансляция рнк, синтез белков и образование зрелых вирионов. Парвовирусы.
- •52. Вирусы с негативным рнк-геном. Структурная организация и репродукция рабдовирусов, ортомиксовирусов и парамиксовирусов.
- •Группы риска
- •54. Вирус гепатита в. Особенности структурной организации вируса. Транскрипция вирусной рнк и репликация на основе обратной транскрипции полного рнк транскрипта.
- •55. Вирусы группы оспа и осповакцины.
- •56. Паповавирусы, герпевирусы и аденовирусы.
- •57. Бактериофаги: основные морфологические формы, структура фагов. Вирулентные и умеренные фаги. Этапы взаимодействия фага с клеткой.
- •59. Вирусы гепатита а. Болезнь Боткина.
- •61. Культивирование и индикация вируса.
37. Маслянокислое брожение: виды, возбудители. Работы л. Пастера.
Маслянокислое брожение – характеризуется образованием масляной кислоты, причем водород и углекислота являются побочными продуктами. Оно может идти по уравнению: C 6H12O6 = 2H2 + 2CO2 + C4H8O2 (маслян. кисл.), но может идти и следующим образом: С 6H12O6 = 2С 3 Н 6 О 3 (Молочн. кисл.), 2С 3 Н 6 О 3 = 2Н 2 O + СО 2 + С 4H8 О 2 (маслян. кисл.) При скисании молока она образуется, следовательно, из молочной кислоты; кроме того, на ее образование могут идти почти все известные углеводы. Возбудителем этого брожения является форма, описанная различными исследователями под назв. Clostridium butyricum, Vibrio butyricus, Amylobacter clostridium, Bacillus amylobacter и др. Возбудитель этот анаэробен и состоит из тонких цилиндрических палочек, которые иногда соединены в цепочки; образуемые им споры эндогенны и находятся обыкновенно посередине его тела, которое при этом веретенообразно вздувается. Кроме Clostridium batyricum, способностью образовывать масляную кислоту обладают еще и многие другие микроорганизмы, вырабатывающие ее в числе многих других продуктов.
Возбудители маслянокислого брожения — строгие анаэробы, подвижные палочки с клостриди-альным или плектридиальным типом спорообразования.
По преобладанию тех или иных конечных продуктов маслянокислое брожение подразделяют на истинно маслянокислое брожение (брожение глюкозы, крахмала), ацетонобутиловое брожение, брожение пектиновых веществ.
Маслянокислые бактерии широко распространены в почве (как правило, содержатся в 90% почвенных образцов), навозе, загрязненных водоемах, в разлагающихся растительных остатках, молоке, на поверхности растении п г. д.
Процесс маслянокислого брожения протекает по схеме:
4С6Н1206 = ЗСН3СН2СН2СООН + 2СН3СООН + 8С02 + 8Н2
Глюкоза Масляная Уксусная Диоксид Водород
кислота кислота углерода
Кроме масляной, в процессе брожения в заметных количествах образуется уксусная кислота, а при подкислении среды (до рН 5,5) — значительные количества бутилового спирта и ацетона.
Энергетическим материалом для маслянокислых бактерий служит крахмал, водорастворимые углеводы (декстрины, Ди-, моносахариды), органические кислоты (молочная, пиро-ниноградная) и спирты (маннит. глицерин). В качестве источ ника азота бактерии используют самые различные азотистые соединения: пептон, аминокислоты, аммиачные соли, а некоторые — даже атмосферный азот.
Характерная особенность маслянокислых бактерии — способность накапливать в клетках гранулезу перед образованием спор.
Пектиновые (от греч. pektos — студнеобразный) вещества нерастворимы в воде, но способны к набуханию. Они в значительном количестве содержатся в любом растительном материале. В технических культурах (лен, конопля, кендырь и др.) лубяные волокна соединены с кострой и паренхимой при помощи пектиновых веществ. Поэтому брожение последних нашло широкое применении при технической обработке волокнистых растении.
Пектин разрушается микроорганизмами, содержащими фермент пектиназу. Процесс брожения пектиновых веществ состоит из двух последовательных стадий. В первой стадии они гидролизуются до сахаров, во второй идет дальнейшее сбраживание отдельных продуктов гидролиза (галактозы и арабинозы до масляной кислоты, С02, Н2 или Н20.
Возбудители маслянокислого брожения пектиновых вешеств — облигатные анаэробы. Они подвижны, образуют споры; сбраживают пектин, глюкозу, арабинозу, крахмал, но не сбраживают целлюлозу; малотребовательны к источникам азота. Наряду с пектином хорошо усваивают минеральные формы азота.
Возбудители маслянокислого брожения широко распространены в природе и относятся к роду Clostridium (в дальнейшем Cl.), семейству Bacillaceace. Клетки грамположительные, палочковидные, форма клетки может изменяться в зависимости от условий среды. В молодом возрасте подвижны, имеют перитрихиальное жгутикование. Образует споры, диаметр которых бывает больше толщины клетки. Маслянокислые бактерии являются облигатными анаэробами, однако существуют все переходные формы: от строгих анаэробов (Cl. pasterianum, Cl. kluyveri) до почти аэротолерантных (Cl. histolyticum, Cl. acetobutylicum). Оптимальная температура роста 30…40 °C, но есть термофильные виды с оптимальной температурой 60…75 °C (Cl. thermoaceticum, Cl. thermohydrosulfucicum).
Пастер показал, что и для молочного брожения также необходимо присутствие особого «организованного фермента» (как в то время называли живые клетки микробов), который размножается в бродящей жидкости, также увеличиваясь в весе, и при помощи которого можно вызывать ферментацию в новых порциях жидкости.