
- •Декартова система координат на плоскости, векторы на плоскости и операции с ними.
- •* Операции над векторами:
- •2. Скалярное произведение и проекции векторов на плоскости.
- •3. Прямая на плоскости: методы задания, виды уравнений и смысл коэффициентов
- •4. Взаимное расположение прямых на плоскости: пересечение прямых, угол между прямыми.
- •5. Расстояние от точки до прямой.
- •7. Линии уровня поверхностей и их интерпретация.
- •8.Постановка и графическое решение задачи линейного программирования с двумя переменными.
- •9. Кривые второго порядка на плоскости: общее уравнение, каноническая форма и графики кривых в канонической системе координат.
- •10. Определение и геометрические свойства эллипса, гиперболы и параболы
- •11. Декартова система координат в , базис и его особенности (ортонормированность).
- •12. Линейные операции с векторами в пространстве (сложение, умножение на число).
- •13.Скалярное произведение векторов в пространстве . Угол между прямыми.
- •14.Длина вектора в пространстве , . Обобщение длины – норма вектора в .
- •15.Векторное произведение : геометрическая интерпретация и формула вычисления.
- •16.Общее уравнение плоскости и уравнение плоскости в отрезках. Нахождение общего уравнения плоскости по трем точкам, принадлежащим плоскости.
- •17.Параметрическое и каноническое уравнение прямой в пространстве
- •18. Взаимное расположение плоскостей в пространстве: линии пересечения плоскостей, угол между плоскостями.
- •У гол между плоскостями
- •19.Расстояние от точки до плоскости, угол между прямой и плоскостью
- •Угол между прямой и плоскостью
- •20. Поверхности второго порядка: канонические уравнения и виды поверхностей
- •28.Обратная матрица: определение и 2 метода вычисления
- •29.Классификация слау в зависимости от числа линейно-независимых уравнений и числа неизвестных, теорема Кронекера-Капелли о совместности слау.
- •Достаточность:
- •30.Решение слау методом Крамера.
- •31.Решение слау методом Гаусса.
16.Общее уравнение плоскости и уравнение плоскости в отрезках. Нахождение общего уравнения плоскости по трем точкам, принадлежащим плоскости.
Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:
Ax + By + Cz + D = 0
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох
В = 0 – плоскость параллельна оси Оу
С = 0 – плоскость параллельна оси Оz
D = 0 – плоскость проходит через начало координат
А = В = 0 – плоскость параллельна плоскости хОу
А = С = 0 – плоскость параллельна плоскости хОz
В = С = 0 – плоскость параллельна плоскости yOz
А = D = 0 – плоскость проходит через ось Ох
В = D = 0 – плоскость проходит через ось Оу
С = D = 0 – плоскость проходит через ось Oz
А = В = D = 0 – плоскость совпадает с плоскостью хОу
А = С = D = 0 – плоскость совпадает с плоскостью xOz
В = С = D = 0 – плоскость совпадает с плоскостью yOz
Уравнение плоскости в отрезках
где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.
Стандартное уравнение плоскости -
Ax + By + Cz + D = 0
Вектор (A, B, C) перпендикулярен плоскости.
Уравнение плоскости по трем точкам (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) можно получить из следующих опрееделителей:
Раскрывая, получаем
A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2)
B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2)
C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)
- D = x1 (y2 z3 - y3 z2) + x2 (y3 z1 - y1 z3) + x3 (y1 z2 - y2 z1)
Следует заметить, что, если все точки лежат на одной прямой, то (A,B,C) будет (0,0,0).
Знак s = Ax + By + Cz + D определяет, с какой стороны по отношению к плоскости находится точка (x,y,z). Если s > 0, то точка лежит в той стороне, куда указывает нормальный вектор (A,B,C). Если s < 0 - на противаположной стороне, а в случае s = 0 точка принадлежит плоскости.
17.Параметрическое и каноническое уравнение прямой в пространстве
Параметрические уравнения прямой в пространстве:
(**)
Вы никогда не сталкивались с параметрическим заданием кривых? Поясним на примере: представьте себе, что по заранее намеченному маршруту с известной скоростью движется турист (автомобиль, самолёт, подводная лодка, как Вам больше понравится). Тогда, зная точку начала его путешествия, мы в любой момент времени знаем, где он находится. Таким образом, его положение на маршруте определяется всего одним параметром – временем.
В нашем случае турист движется по бесконечной прямой в пространстве, в момент времени t0=0 он находится в точке М0, в любой другой момент времени t его координаты в пространстве вычисляются по формулам (**).
Теперь несколько преобразуем формулы (**).
Выразим
из каждой строчки параметр t:
Канонические уравнения прямой в пространстве:
Замечание 2: Эта компактная запись на самом деле содержит три уравнения.
Замечание
3: Это формальная запись и выражение
вида
в
данном случае допустимо.
Замечание 4: Надо понимать, что для уравнения плоскости (прямой) играет роль именно направление перпендикулярного (направляющего) вектора, а не он сам. Т.о. вполне допустимо из каких-либо соображений заменять данный (или полученный в ходе решения) вектор на пропорциональный ему. Целесообразно также упрощать полученное уравнение, деля все его коэффициенты на общий множитель.