
- •1.Общие принципы проектирования оснований и фундаментов. Исходные данные, необходимые для проектирования.
- •2. Анализ инженерно-геологических условий, их влияние на варианты фундаментов
- •3.Виды деформаций зданий и вооружений. Причины развития неравномерных осадок сооружений.
- •4. Технико-экономические факторы, определяющие оптимальность проектного решения.
- •5. Конструктивные меры борьбы по уменьшению влияния неравномерных осадок сооружения.
- •6.Фундаменты в открытых котлованах на естественном основании. Виды фундаментов.
- •7. Выбор типа и материала фундамента. Сборные и монолитные фундаменты
- •8. Защита подвальных помещений от грунтовых вод.
- •9.Определение глубины заложения фундаментов.
- •10.Определение размеров жестких фундаментов при действии различных сочетаний нагрузок
- •11.Расчеты фундаментов по предельным состояниям оснований.
- •12. Свайные фундаменты. Область применения свайных фундаментов
- •13.Классификация свай по условиям изготовления, по форме поперечного и продольного сечений, по материалу, по условиям передачи нагрузки на грунты.
- •Особенности использования свай
- •14 Условия работы свай-стоек и висячих свай. Определение их несущей способности по прочности материала и грунта.
- •15 Конструкции ростверков.
- •17Особенности работы одиночной сваи и группы свай, объединенных низким ростверком.
- •18.Последовательность проектирования свайных фундаментов с низким ростверком при действии центральных, внецентренных и горизонтальных нагрузок.
- •1) Проектирование центрально нагруженных свайных фундаментов
- •2)Проектирование внецентренно нагруженных свайных фундаментов
- •3) Свайные фундаменты, воспринимающие горизонтальные нагрузки.
- •19.Выбор сваебойного оборудования и определение отказа свай.
- •20.Методы искусственного улучшения грунтов оснований Классификация методов искусственного улучшения оснований (механические, физические, химические).
- •Глубинное уплотнение грунта
- •Устройство песчаных подушек
- •Метод уплотнения песчаными и грунтовыми сваями
- •22. Предварительное обжатие грунтов: понижение уровня грунтовых вод, вертикальные дрены, электроосмос. Метод уплотнения понижением уровня грунтовых вод
- •Метод уплотнения приложением нагрузки
- •Электроосмос
- •Электрохимическое закрепление
- •Цементация оснований
- •24. Проектирование котлованов. Обеспечение устойчивости откосов котлованов (естественные откосы, крепления и шпунтовые стенки, стена в грунте). Естественные откосы
- •Крепления
- •Шпунтовые стенки
- •Стена в грунте
- •26.Подготовка оснований к заложению фундаментов.
- •27.Требования техники безопасности и охраны труда при устройстве оснований и возведении фундаментов.
- •28.Защита подвальных помещений и фундаментов от подземных вод.
- •29. Фундаменты глубокого заложения. Классификация фундаментов глубокого заложения.
- •1.Опускные колодцы.
- •30. Особенности работы оснований фундаментов глубокого заложения.
- •31.Предельные состояния. Основные положения расчетов оснований и фундаментов по предельным состояниям
- •32. Колодцы-оболочки и массивные опускные колодцы.
- •33. Проектирование кессонных фундаментов. Буровые опоры.
- •34. Производство работ при устройстве фундаментов глубокого заложения.
- •36. Особенности формирования насыпных грунтов, их строительная классификация.
- •А. Особенности просадочных, макропористых грунтов.
- •38.Строительство на скальных, элювиальных грунтах, закарстованных и подрабатываемых территориях
- •Способы противокарстовой защиты:
- •39.Свойства скальных и элювиальных грунтов. Особенности строительства на них.
- •40.Понятие о карстообразовании. Особенности строительства на закарстованных территориях. Противокарстовая защита.
- •Способы противокарстовой защиты:
- •41. Воздействие деформаций земной поверхности при подработке территорий на сооружения.
- •42.Особенности строительства на подрабатываемых территориях.
- •44.Фундаменты в сейсмических районах. Сейсмическое микрорайонирование площадок строительства. Понятия о сейсмических нагрузках.
- •45. Основные положения проектирования и особенности для сейсмических районов.
- •46. Реконструкция фундаментов и усиление оснований
- •47. Причины, вызывающие необходимость реконструкции фундаментов и усиления оснований.
- •48. Методы усиления оснований и укрепления фундаментов, изменение условий передачи нагрузки, увеличение прочности материала фундаментов и грунтов в основании.
- •49. Устройство фундаментов под конструкции и оборудование внутри действующих предприятий и вблизи существующих объектов.
- •50. Проектирование оснований, фундаментов и подземных конструкций при реконструкции и надстройке зданий и сооружений.
- •Анализ инженерно-геологических условий, их влияние на варианты фундаментов.
15 Конструкции ростверков.
Ростверк — верхняя часть свайного или столбчатого фундамента, распределяющая нагрузку на основание. Ростверк выполняется в виде балок или плит, объединяющих оголовки столбов (свай) и служащих опорной конструкцией для возводимых элементов сооружения.
Ростверк – бетонная или железобетонная плита, объединяющая головы свай.
Низкий ростверк Повышенный ростверк Высокий ростверк
Свайный фундамент – это группа свай, объединенная ростверком.
Преимущество забивных свайных фундаментов:
Почти полное исключение монолитных работ.
Сокращение земляных работ.
Резкое снижение объема ручных работ.
16. Способы определения несущей способности одиночных висячих свай из условий прочности грунта: по теоретическим формулам; по результатам испытаний пробной статической нагрузкой; по данным пробной забивки (динамический способ); по результатам зондирования и испытаниям эталонных свай в полевых условиях.
Несущая способность висячих свай (свай трения) по теоретическим формулам.
N0,Nб – сопротивление сваи, соответственно под острием и по боковой поверхности.
Р – расчетная нагрузка, допускаемая на сваю.
где R – расчетное сопротивление грунта сваи под острием; u – периметр сваи; fi – расчетное удельное сопротивление грунта по боковой поверхности сваи; i - мощность i слоя грунта, где действует fi
Определения несущей способности свай динамическим способом:
QH = A+B+C
QH – работа свайного молота;
A= Pe – работа, затраченная на погружение сваи;
В = Qh – работа упругих деформаций (подскок свайного молота);
С= QH – потерянная работа (трение, смятие, нагрев и т.д.).
QH = Pe + Qh +QH
Р – сопротивление сваи погружению (несущая способность сваи);
- коэффициент, учитывающий потерю работы.
В результате получаем квадратное уравнение, решение которого можно представить в виде:
А – площадь поперечного сечения сваи;
е – действительный отказ сваи;
Q – вес ударной части молота;
q – вес сваи; n – коэффициент, учитывающий упругие деформации (150 т/м2 – для ж/б сваи). Практически, при проектировании эту формулу используют для определения величины отказа (е), определив заранее расчетом величину (Р).
Определение несущей способности свай статической нагрузкой:
Испытуемая свая
Анкерные сваи
домкрат
Балка
Нагрузка прикладывается ступенями по 5 т.Каждая ступень выдерживается до полной стабилизации осадки, определяемой прогибомерами с точностью до 0,1 мм. По данным испытаниям строятся графики.
Расчетная нагрузка,
допускаемая на сваю :
Определение
несущей способности свай методом
зондирования
Зонд может погружаться:
- вдавливанием (статическое зондирование);
- забивкой (динамическое зондирование).
Робщ = Рост + Рбок
Р
общ
=120 кг/см2
Робщ
- Рост
= Рбок
=120-40=80 кг/см2
Рост= 40 кг/см2
По данным зондирования можно судить о несущей способности сваи, а также с использованием эмпирических формул определять модуль общей деформации грунта Е0. Преимущество метода-малая стоимость, возм. проведения большого кол-ва испытаний.