
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Подготовка Сиакод.doc
X
- •Предмет изучения дисциплины "Структуры и алгоритмы обработки данных на эвм". Абстрактные типы данных. Классификация структур данных.
- •Хеширование. Хеш-функции. Коллизии и методы их устранения. Сферы применения хеширования, достоинства метода.
- •Деревья: поисковое дерево, идеально - сбалансированное дерево, сбалансированное поисковое дерево, в-дерево. Рекурсивные методы прохождения деревьев. Алгоритмы построения деревьев.
- •Сферы применения графов. Способы машинного представления графов, их достоинства и недостатки.
- •Алгоритмы поиска в графе: поиск в ширину, поиск в глубину.
- •Эйлеров путь, эйлеров цикл, эйлеров граф. Алгоритм нахождения эйлерова цикла.
- •Нахождение кратчайших расстояний. Алгоритм Дейкстры.
- •Алгоритмы с возвратом.
- •Алгоритм нахождения гамильтоновых циклов в графе.
- •Метод ветвей и границ.
- •Остовные деревья графа. Алгоритмы нахождения дерева минимального веса: алгоритм Прима, алгоритм Крускала.
- •Эффективность алгоритмов и её составляющие. Алгоритмы и их сложность. Доминирование. О-функции и их особенности.
- •Правила для определения сложности. Функции, часто используемые для оценки сложности алгоритмов (список функционального доминирования). Сравнение алгоритмов с различными порядками сложности.
- •Анализ алгоритмов и определение их сложности по управляющим структурам. Контрольные замеры. Критический взгляд на о-анализ. (ограниченность о-анализа).
- •Полиномиальные алгоритмы и труднорешаемые задачи. Два аспекта труднорешаемости задач. Недетерминированное вычисление и класс np.
- •Теория np-полных задач. Структура класса np.
- •Методы решения np-полных задач. Применение теории np-полноты для анализа задач.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]