
- •Общая характеристика систем электроснабжения (сэ), их особенности.
- •Требования, предъявляемые к сэ.
- •Структурная схема сэс. Различия между пгв и гпп.
- •Графики нагрузок промышленных предприятий.
- •Коэффициенты, характеризующие графики нагрузок.
- •Понятие расчетной нагрузки. Характерные места определения расчетных нагрузок.
- •Расчетная нагрузка может быть активной, реактивной, полной ( , , ), и расчетный ток .
- •В системе эл.Снабжения промышленного предприятия существует несколько характерных мест определения расчетных электрических нагрузок. Рассмотрим эти характерные места на схеме.
- •Статистический метод. Метод определения расчетной нагрузки по коэффициенту формы.
- •– Постоянная времени нагрева проводника, на которые разбит групповой график, а фактически по всем ступеням суточного графика.
- •Для группового графика
- •Вспомогательные методы определения расчетной нагрузки.
- •Метод удельного расхода энергии на единицу продукции.
- •Метод упорядоченных диаграмм.
- •Величина определяется по следующему выражению :
- •Алгоритм определения расчетной нагрузки предприятия в целом.
- •Влияние компенсации реактивной мощности на экономичность работы сэ.
- •Выбор компенсирующих устройств и мест их размещения.
- •Режимы работы нейтрали и условия, влияющие на их выбор.
- •Выбор числа и мощности трансформаторов для цеховых подстанций. Расположение цеховых подстанций.
- •Блочные схемы ру вн ппэ без перемычек с выключателем и отделителем − короткозамыкателем.
- •Блочные схемы ру вн ппэ с перемычками.
- •Схемы ру нн для ппэ без реактирования
- •Схемы ру нн для ппэ с реактированием.
- •Выбор места расположения гпп и рп
- •Выбор напряжения распределения. В каких случаях следует применять параллельную работу вводов и трансформаторов.
- •Схемы распределения электроэнергии в сетях 6-10 кВ (межцеховые сети).
- •Подключение цеховых трансформаторов при радиальной и магистральной схеме питания. Схемы шкафов высоковольтного ввода.
- •Выбор трансформаторов с учетом систематической и аварийной перегрузки.
- •Расчет токов к.З. В сэ предприятий для выбора элементов. Расчет тока трехфазного кз.
- •Средние значения отношения постоянной времени и Та ударного коэффициента для характерных радиальных ветвей системы электроснабжения напряжением выше 1 кВ
- •Определение ударного тока кз.
- •Понятия заземления и зануления. Общие требования по заземлению и занулению.
- •Общие требования по заземлению. Занулению.
- •Части, подлежащие занулению или заземлению.
- •Не требуется преднамеренно заземлять или занулять.
- •Влияние компенсирующих устройств на устойчивость нагрузки. Влияние компенсирующих устройств на статическую устойчивость нагрузки
- •Снижение уровня потерь электроэнергии при эксплуатации сэс.
- •Выбор выключателей выше 1000 в. Выбор высоковольтных выключателей.
- •Воздушные и вакуумные выключатели
- •Условия выбора выключателей, Проверка выбранного выключателя. Проверка по апериодической составляющей тока кз. Проверка по термической стойкости.
- •Разъединители. Назначение. Конструкция. Область применения. Условия выбора.
- •Короткозамыкатели и отделители. Назначение. Конструкция. Область применения. Условия выбора.
- •Выбор выключателей нагрузки и предохранителей. Назначение. Конструкция. Область применения.
- •Выбор электорооборудования до 1000 в. Выбор предохранителей до 1000 в. Выбор плавкой вставки для защиты конденсаторной батареи. Выбор плавкой вставки для защиты асинхронного двигателя.
- •Для безинерционных предохранителей должны удовлетворять двум условиям, одно из которых определяется выражением (1), а другое одной из ниже перечисленных формул.
- •Автоматические воздушные выключатели до 1000 в. Назначение. Конструкция. Область применения. Условия выбора.
- •Трансформаторы тока. Назначение. Область применения. Условия выбора.
- •Трансформаторы напряжения. Область применения. Условия выбора.
- •Общая характеристика реактивной мощности. Ее физический смысл.
- •Графики активной и реактивной мощности. Перетоки реактивной мощности и их последствия.
- •Способы и средства компенсации реактивной мощности. Основные мероприятия по рационализации режима реактивной мощности.
- •Средства компенсации реактивной мощности.
- •Определение мощности компенсирующих устройств предприятия
- •Определение суммарной мощности бск до 1000 в.
- •Распределение бск по электрической схеме. Схемы соединения и подключения бск в электрическую сеть. Коммутационная аппаратура.
- •Регулирование реактивной мощности.
- •Нормы качества электрической энергии. Классификация норм качества электроэнергии.
- •Качество эл. Энергии оцениваются по технико-экономическим показателями, которые учитывают технологический и электромагнитный ущерб, причиняемый народному хозяйству.
- •Показатели, характеризующие качество электроэнергии. Коэффициент несинусоидальности. Коэффициент обратной последовательности.
- •Влияние отклонения напряжения на работу электроприемников: асинхронный двигатель, синхронный двигатель, осветительные установки, электротехнологические установки.
- •Классификация помещений по электробезопасности.
Распределение бск по электрической схеме. Схемы соединения и подключения бск в электрическую сеть. Коммутационная аппаратура.
Наиболее распространенными видами компенсирующих устройств, которые выполняют роль местных генераторов реактивной мощности на предприятиях, являются батареи статических конденсаторов и синхронные двигатели. Конденсаторные батареи устанавливают на цеховых общезаводских трансформаторных подстанциях — со стороны низкого или высокого напряжения.
Чем ближе компенсирующее устройство к приемникам реактивной энергии, тем больше звеньев системы электроснабжения разгружается от реактивных токов. Однако при централизованной компенсации, т. е. при установке конденсаторов на трансформаторных подстанциях, конденсаторная мощность используется более полно.
В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:
Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью - асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор - контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.
|
|
|
|||
Групповая компенсация |
Индивидуальная компенсация |
Централизованная компенсация |
Установка компенсации реактивной мощности состоит из определенного числа конденсаторных ветвей, которые в своём построении и ступенях подбираются исходя из особенностей каждой конкретной электросети и её потребителей реактивной мощности.
Устройство статических конденсаторов для компенсации реактивной мощности
Основными элементами конструкции конденсаторов являются бак с изоляторами и выемная часть, состоящая из батареи секций простейших конденсаторов.
Конденсаторы единой серии напряжением до 1050 В включительно изготавливают со встроенными плавкими предохранителями, последовательно соединенными с каждой секцией. Конденсаторы более высокого напряжения не имеют встроенных плавких предохранителей и требуют отдельной их установки. В этом случае осуществляется групповая зашита конденсаторов плавкими предохранителями. При выполнении групповой защиты в виде плавких предохранителей один предохранитель защищает каждые 5—10 конденсаторов, причем номинальный ток группы не превышает 100 А. Кроме того, устанавливаются общие предохранители для всей батареи.
Для конденсаторов напряжением 1050 В и ниже, имеющих встроенные предохранители, устанавливаются также общие предохранители для батареи в целом, а при значительной мощности батареи — и для отдельных секций.
В зависимости от напряжения сети трехфазные батареи конденсаторов могут комплектоваться из однофазных конденсаторов с последовательным или параллельно — последовательным соединением конденсаторов в каждой фазе батареи.
Присоединение конденсаторных батарей к сети
Батареи конденсаторов любых напряжений могут присоединяться к сети или через отдельный аппарат, предназначенный для включения или отключения только конденсаторов, или через общий аппарат управления с силовым трансформатором, асинхронным двигателем или другим приемником электроэнергии.
Статические конденсаторы в установках напряжением до 1000 В включаются в сеть и отключаются от сети с помощью автоматических выключателей или рубильников.
Конденсаторы, применяемые в установках напряжением выше 1000 В, включаются в сеть и отключаются от сети только посредством выключателей или разъединителей мощности (выключателей нагрузки).
Для того чтобы затраты на отключающую аппаратуру не были очень велики, не рекомендуется принимать мощности конденсаторных батарей менее:
а) 400 квар при напряжении 6-10 кВ и присоединении батарей к отдельному выключателю;
б) 100 квар при напряжении 6-10 кВ и присоединении батареи к общему с силовым трансформатором или другим электроприемником выключателю;
в) 30 квар при напряжении до 1000 В.
Использование разрядных сопротивлений с конденсаторами для компенсации реактивной мощности
Для безопасности обслуживания отключенных конденсаторов при снятии электрического заряда требуется применение разрядных сопротивлений, присоединенных параллельно к конденсаторам. В целях надежного разряда присоединение разрядных сопротивлений к конденсаторам следует производить без промежуточных разъединителей, рубильников или предохранителей. Разрядные сопротивления должны обеспечивать быстрое автоматическое снижение напряжения на зажимах конденсатора.
Конденсаторы могут изготовляться со встроенными внутрь разрядными сопротивлениями, расположенными под крышкой на изоляционной прокладке. Эти сопротивления снижают напряжение с максимального рабочего до 50 В не более чем за 1 мин для конденсаторов напряжением 660 В и ниже и не более чем за 5 мин для конденсаторов напряжением 1050 В и выше.
Большинство уже установленных на промышленных предприятиях конденсаторов не имеют встроенных разрядных сопротивлений. В таком случае в качестве разрядного сопротивления при напряжении до 1 кВ для батарей конденсаторов обычно применяют лампы накаливания на напряжение 220 В. Соединение ламп, включенных по нескольку штук последовательно в каждой фазе, производится по схеме треугольника. При напряжении выше 1 кВ в качестве разрядного сопротивления устанавливаются трансформаторы напряжения, включаемые по схеме треугольника или открытого треугольника.
Схема включения ламп накаливания для разряда батарей конденсаторов (до 1000 В) с помощью рубильника с двойными ножами
Постоянное присоединение ламп накаливания, применяемых обычно в качестве разрядных сопротивлений для батарей конденсаторов напряжением до 660 В, вызывает непроизводительные потери энергии и расход ламп.
Чем меньше мощность батареи, тем большая мощность ламп приходится на 1 квар установленных конденсаторов. Более целесообразным является не постоянное присоединение ламп, а их автоматическое включение при отключении конденсаторной установки. Для этой цели может быть использована схема, изображенная на рисунке, в которой применяются рубильники с двойными ножами. Добавочные ножи располагаются таким образом, чтобы включение ламп происходило до отключения батареи от сети, а их отключение — после включения батареи. Это может быть достигнуто путем подбора соответствующего угла между главными и дополнительными ножами рубильника.
При непосредственном присоединении конденсаторов и приемника электроэнергии к сети под общий выключатель специальных разрядных сопротивлений не требуется. В этом случае разряд конденсаторов происходит на обмотки электроприемника.
Комплектные конденсаторные установки общепромышленного исполнения
Комплектные конденсаторные установки на напряжение 380 В изготавливаются для внутренней установки, а на напряжение 6-10 кВ - как для внутренней, так и для наружной. Диапазон мощностей этих установок достаточно широк, причем большинство типов современных комплектных конденсаторных установок оборудовано устройствами для одно— или многоступенчатого автоматического ^регулирования их мощности.
Комплектные конденсаторные установки на напряжение 380 В выполняются из трехфазных конденсаторов, а на напряжение 6—10 кВ — из однофазных конденсаторов мощностью 25—75 квар, соединенных в треугольник.
Комплектная конденсаторная установка состоит из вводного шкафа и шкафов с конденсаторами. В установках на напряжение 380 Вв вводном шкафу устанавливаются: устройство автоматического регулирования, трансформаторы тока, разъединители, измерительные приборы (три амперметра и вольтметр), аппаратура управления и сигнализации, а также ошиновка.
В случае применения конденсаторов со встроенными разрядными сопротивлениями трансформаторы напряжения не устанавливаются. Ячейка ввода питается кабелем от ячейки распределительного устройства (РУ) 6 — 10 кВ, в которой устанавливается аппаратура управления, измерения и защиты.