- •Ответы на вопросы к итоговой аттестации по дисциплине «Введение в специальность»
- •1) Теории происхождения нефти
- •2) Состав нефти. Фракционный состав нефти. Качественные характеристики нефтей.
- •3) Химические свойства нефти. Углеводородная, асфальтосмолистая и зольная составные части нефти, порфирины и сера.
- •4) Физические свойства нефти. Фракционный состав нефти. Плотность нефти. Вязкость нефти. Оптические и электромагнитные свойства нефти.
- •5) Продукты нефтепереработки. Качественные характеристики нефтепродуктов.
- •6) Очистка нефтепродуктов. Методы очистки нефтепродуктов. Стабилизация нефти.
- •7) Использование продуктов переработки нефти. Альтернативные природные ресурсы.
- •8) Подготовка нефти к переработке. Дегазация нефти. Стабилизация нефти. Обезвоживание нефти.
- •2.1.3 Нефтяные эмульсии
- •2.1.4 Обезвоживание нефти
- •2.1.5 Обессоливание нефти
- •9) Нефтеперерабатывающие заводы. Мощность переработки. Ассортимент выпускаемых нефтепродуктов. Направления переработки нефти.
- •10) Выбор направления (профиля) переработки нефти
- •11) Первичные (физические, прямая перегонка) и вторичные (химические) методы переработки нефти. Глубина переработки нефти.
- •12) Первичные (физические) методы переработки нефти (прямая перегонка нефти). Сырье. Получаемые продукты.
- •13) Вторичные (химические) высокотемпературные методы переработки нефти и нефтепродуктов. Сырье. Получаемые продукты.
- •14) Крекинг нефти. Краткое описание процесса. Условия протекания. Сырье. Получаемые продукты.
- •15) Термический крекинг. Краткое описание процесса. Условия протекания. Сырье. Получаемые продукты.
- •16) Каталитический крекинг. Краткое описание процесса. Условия протекания. Сырье. Получаемые продукты.
- •17) Риформинг. Краткое описание процесса. Условия протекания. Сырье. Получаемые продукты.
- •18) Основное аппаратурное оформление нпз.
- •19) Печи нагревательные. Назначение. Устройство. Принцип работы. Основные типы печей.
- •5.1 Теплообмен в трубчатой печи
- •5.2 Основные типы печей
- •21) Теплообменные аппараты. Назначение. Устройство. Принцип работы. Основные типы.
- •22) Трубопроводы. Насосы. Компрессоры. Назначение.
- •1) Какое свойство бензина характеризует октановое число.
- •2) Определение нефтяной фракции.
- •3) Основные нефтяные фракции.
- •4) Основные продукты нефтепереработки.
- •9) Какой аппарат предназначен для разделения нефти на фракции.
- •10) Пять ключевых дат в истории угнту. Год открытия нефти в Башкирии.
- •11) Гоу впо угнту. Мф. Кафедра тмо. Расшифровка. Структура университета. Должности профессорско-преподавательского состава. Ученые степени.
- •Структура университета
5.1 Теплообмен в трубчатой печи
Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочной камере), где сжигается топливо, размещена радиантная поверхность (экран), поглощающая лучистое тепло в основном за счет радиации.
В камере конвекции расположены конвекционные трубы, воспринимающие тепло главным образом при соприкосновении дымовых газов с поверхностью нагрева путем конвекции.
Нагреваемый продукт в печи последовательно проходит через конвекционные и радиантные трубы, поглощая тепло. Обычно радиантная поверхность воспринимает большую часть тепла, выделяемого в печи при сгорании топлива.
Основными показателями, характеризующими работу трубчатой печи, являются полезная тепловая нагрузка, теплонапряженность поверхности нагрева и топочного пространства, коэффициент полезного действия печи.
5.2 Основные типы печей
В промышленности применяется большое число различных конструкций и типоразмеров трубчатых печей. При выборе печи в основном следует учитывать вид топлива (газовое или комбинированное); требование технологического процесса к расположению труб камеры радиации (горизонтальное или вертикальное); необходимость дифференциального подвода тепла к трубам камеры радиации; количество регулируемых потоков; время пребывания продукта в печи или камере радиации. В настоящем кратком обзоре нет необходимости характеризовать печи всех известных типов. Рассмотрим только печи основных типов, имеющих широкое распространение.
Печь беспламенного горения с излучающими стенками представлена на рис. 5.1. Беспламенные панельные горелки 1 расположены пятью рядами в каждой фронтальной стене камеры радиации. Каждый горизонтальный ряд имеет индивидуальный газовый коллектор, что создает возможность независимого регулирования теплопроизводительности горелок одного ряда и теплопередачи к соответствующему участку радиантного экрана 2.
20) Колонна ректификационная. Реактор. Назначение. Устройство. Принцип работы.
В зависимости от применяемого давления колонные аппараты подразделяются на:
- атмосферные;
- вакуумные;
- колонны, работающие под давлением.
К атмосферным колоннам обычно относят колонны, в верхней части которых рабочее давление незначительно превышает атмосферное и определяется сопротивлением коммуникаций и аппаратуры, расположенных на потоке движения паров ректификата после колонны. Давление в нижней части колонны зависит в основном от сопротивления ее внутренних устройств и может значительно превышать атмосферное (например, колонна для разделения смеси этилбензола и ксилолов).
В вакуумных колоннах давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта (разделение мазута, производство стирола, синтетических жирных кислот и др.). Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и главным образом допустимой максимальной температурой их нагрева без заметного разложения. В колоннах, работающих под давлением, величина последнего может значительно превышать атмосферное (колонны ГФУ, стабилизаторы, абсорберы и др.).
а - тарельчатый; б - насадочный; в - пленочный;
1 -- корпус колонны; 2 - полотно тарелки; 3 - переточное устройство;
4 - опорная решетка; 5 - насадка; 6 - распределитель: 7 трубная решетка;
8 - трубка
Рис. 3.1. Схемы основных типов колонных аппаратов
По технологическому назначению колонные аппараты подразделяются на колонны атмосферных и атмосферно-вакуумных установок разделения нефти и мазута, колонны установок вторичной перегонки бензинов, каталитического крекинга, установок газоразделения, установок регенерации растворителей при депарафинизации масел и др.
По типу внутренних контактных устройств различают тарельчатые, насадочные и пленочные колонные аппараты (рис. 3.1). Области применения контактных устройств определяются свойствами разделяемых смесей, рабочим давлением в аппарате, нагрузками по пару (газу) и жидкости и т.п.
В тарельчатых аппаратах (рис. 3.1, а) контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке).
В насадочных колоннах (рис. 3.1, 6) контакт между газом (паром) и жидкостью осуществляется на поверхности специальных насадочных тел, а также в свободном пространстве между ними.
В пленочной колонне (рис. 3.1, в) фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности.
В нефтегазопереработке в основном применяются тарельчатые колонны. Однако в последние годы в связи с созданием эффективных насадок возрос интерес и к насадочным колоннам, особенно это относится к вакуумным процессам, приобретающим в этом случае ряд положительных характеристик: низкое гидравлическое сопротивление, малая задержка жидкости, высокая эффективность в широком интервале изменения нагрузок по пару (газу) и жидкости и др.
Принципиальное устройство ректификационной колонны
Схема ректификационной колонны приведена
на рис. 3.2. В среднюю часть колонны
поступает подлежащее ректификации
сырье, нагретое до температуры t
.
Сырье может подаваться в колонну в виде
жидкости, паров или смеси паров и
жидкости. При входе сырья в колонну
происходит процесс однократного
испарения, в результате которого
образуются пары G
состава у'
и жидкость g
состава x'
,
находящиеся в равновесии.
Для обеспечения ректификации необходимо
в верхней части колонны навстречу парам
организовать поток жидкости (флегмы,
орошения). Для этого на верху колонны
тем или иным способом отнимается тепло
Q
(тепло парциального конденсатора). За
счет этого часть паров, поднимающихся
с верхней тарелки, конденсируется,
образуя необходимый нисходящий поток
жидкости.
В нижней части колонны нужно обеспечить восходящий поток паров. Для этого в низ колонны тем или иным способом подводится тепло Q (тепло кипятильника). При этом часть жидкости, стекающей с нижней тарелки, испаряется, образуя поток паров.
Рисунок 3.2 - Принципиальная схема ректификационной колонны
При таком режиме самая низкая температура t будет в верху колонны, а самая высокая tw -в низу колонны. Отбираемый с верху колонны продукт D обогащенный НКК, называется ректификатом (или дистиллятом), а с низу колонны W, обогащенный ВКК, - остатком (или нижним продуктом). Та часть колонны, куда вводится сырье, называется секцией питания, или эвапорационным пространством, часть ректификационной колонны, находящаяся выше ввода сырья - верхней, концентрационной или укрепляющей, а ниже ввода сырья - нижней, отгонной или исчерпывающей. В обеих частях колонны протекает один и тот же процесс ректификации.
Наряду с простыми колоннами, которые делят смесь на два продукта, различают также сложные колонны, в которых число отбираемых продуктов больше двух (эти продукты могут выводиться из основной или из отпарных колонн в виде дополнительных боковых погонов).
