Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры часть первая.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
209.92 Кб
Скачать

5. Формула Бернуллі. Біноміальний закон розподілу.

Formula of Bernoulli. Binomial law of distribution.

During the tests event A can occur with probability P(A)=p and non-occur with probability P(A̅)=1-P(A)=q.

SПравая фигурная скобка 2 uppose that n independent tests are made. It is necessary to find probability, that event A occurs m times in n tests. This probability is denoted Pn(m). So event A occur n times and non-occur n-m times. Also we denoted that the order of occurrence and non-occurrence is not important. Event A in n outcomes can occur m times in different order (or combinations) number of these outcomes is equal Cnm.

LПравая фигурная скобка 3 et event B is combination of event A and A̅.

B=A1,A2,A3,…Am, A̅m+1, A̅m+2,…A̅n

m times n-m times

P(B)=P(A1)*(PA2)…P(Am)P(Am+1)P(Am+2)…P(An)=pm(1-p)n-m=pmqn-m

So the formula of Bernoulli is: Pn(m)=Cmnpmqn-m

6. Найімовірніша частота та її імовірність

The most probable number of occurrence and its probability.

The most probable of occurrence of event A in n tests is denoted by m0. M0 is occurrence of event A in n independent tests, which possibility is Pn(m0) at least not less than possibility of other event Pn(m) for any m.

Let’s find its possibility Pn(m0)

M0 can be evaluated by formula m0≈n*p

M0 can get 1 or 2 values as integer. Pn(m0).

7. Формула Пуассона. Закон рідкісних подій

Poisson’s formula

Theorem: if possibility of occurrence of event A in each test aims to zero p->0 in unlimited increased number of tests (n->∞) and product n*p aims to constant number a, then possibility Pn(m) of occurrence of event A equal m times in n independent tests is equal:

Lim Pn(m)=ame-a

n->∞ m!

Suppose, that p->0

n-> ∞

n*p->a

For n>=100, a=n*p=<10, than for finding Pn(m) we use Poisson’s formula

Pn(m)=ame-a

m!

This formula also is called as low of rare events.

9. Математичне сподівання дискретної випадкової величини та його властивості. Довести (на вибір) дві з них.

Mathematical expectation of DRV and its properties

Mathematical expectation of DRV X is the sum of product of all values of X their

n

probabilities. It’s denoted by M(X) = ∑xi*pi

i=1

Properties of M.E.

  1. M(C)=C, c= const

x

C

C

p

p1

pn

Proof: Lets

MПравая фигурная скобка 4 (C)=C*p1+C*p2+…+C*pn = C(p1+p2+…pn) = C

1

  1. Constant multiplier can be taken out of the brackets: M(C*X)=C*M(X)

Proof

x

x1

x2

xn

p

p1

p2

pn

Cx

Cx1

Cx2

Cxn

p

p1

p2

pn

MПравая фигурная скобка 7 (CX)=CX1*p1+CX2*p2+…+Cxn*pn=C(x1p1+x2p2+…+xnpn)=C*M(X)

M(X)

  1. M(X­+Y)=M(X)+M(Y); M(X-Y)=M(X)-M(Y)

  2. For independent DRV M(X*Y)=M(X)*M(Y)

  3. M(X-M(X))=0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]