
- •Матрицы. Основные понятия. Линейные операции над матрицами и их свойства.
- •Определитель матрицы. Свойства определителей.
- •Миноры и алгебраические дополнения.
- •Теорема замещения.
- •Теорема аннулирования.
- •Некоторые методы вычисления определителей.
- •Умножение матриц. Свойства умножения.
- •Транспонирование матриц.
- •Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Нахождение обратной матрицы.
- •Матричная запись системы линейных уравнений и её решения.
- •Решение невырожденных линейных систем, формулы Крамера.
- •Ранг матрицы. Свойства ранга матрицы. Вычисление ранга матрицы с помощью элементарных преобразований.
- •Теорема Кронекера - Капелле. Решение произвольных линейных систем.
- •Система однородных линейных уравнений.
- •Решение систем линейных уравнений методом последовательного исключения неизвестных (метод Гаусса).
- •Размерность и базис линейного пространства.
- •Вектор. Проекция вектора на ось.
- •Теорема об единственности разложения вектора по базису. Координаты вектора. Декартова система координат.
- •Расстояние между двумя точками.
- •Деление отрезка в данном отношении.
- •Направление вектора в пространстве.
- •Скалярное произведение векторов и его свойства.
- •Механический смысл скалярного произведения.
- •Ортонормированный базис. Выражение скалярного произведения через координаты в ортонормированном базисе.
- •Векторное произведение векторов и его свойства.
- •Смешанное произведение векторов в координатах.
- •Условия коллинеарности, ортогональности, компланарности векторов.
- •Нормальное уравнение плоскости.
- •Общее уравнение плоскости. Частные случаи расположения плоскости.
- •Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости. Определение точек пересечения прямой и плоскости.
- •Окружность. Определение. Вывод канонического уравнения.
- •Эллипс. Определение. Вывод канонического уравнения. Исследование формыэллипса.
- •Гипербола. Определение. Вывод канонического уравнения гиперболы. Исследование формы гиперболы.
- •Парабола. Определение. Вывод канонического уравнение параболы.
- •Исследование общего уравнения линии 2 порядка в случае отсутствия члена с произведением текущих координат.
- •Сфера. Определение. Вывод канонического уравнения.
- •Цилиндрические поверхности.
- •Эллипсоиды.
- •Гиперболоиды.
- •Параболоиды.
- •Канонические поверхности.
- •Функция. Основные понятия. Способы её задания.
- •Числовая последовательность и её предел.
- •Последовательность. Теорема Больцано – Вейерштрасса.
- •Число е. Натуральные логарифмы.
- •Конечный предел функции.
- •Бесконечный предел функции.
- •Односторонние пределы.
- •Бесконечно малые и бесконечно большие функции. Связь между б.М и б.Б функциями.
- •Предел суммы, произведения, частного.
- •Теорема о промежуточной функции
- •Первый замечательны предел.
- •Второй замечательный предел.
- •Сравнение б.М функций. Эквивалентные б.М функции.
- •Свойства эквивалентные б.М функций.
- •Непрерывность функции в точке. Определение. Свойства функций, непрерывных в точке.
- •Непрерывность функции на отрезке.
- •Свойства функций, непрерывных в отрезке. Точки разрыва и их классификация.
- •Производная. Определение. Механический и геометрический смысл производной.
- •Дифференцируемость функции. Определение. Теорема о непрерывности дифференцируемой функции.
- •Основные правила дифференцируемости.
- •Производная сложной функции.
- •Производная обратной функции.
- •Гиперболические функции и их дифференцирование.
- •Дифференцирование функций, заданной неявно.
- •Дифференцирование функций, заданной параметрически.
- •Производные и дифференциалы высших порядков.
- •Теорема Ролля. Геометрический смысл теоремы Ролля.
- •Теорема Лагранжа. Геометрический смысл теоремы Лагранжа.
- •Теорема Коши
- •Правило Лопиталя и его применение к вычислению переводов.
- •Формула Тейлора и её приложение.
- •1Исследование ф-ций и построение их графиков с помощью дифференциального исчисления.
Парабола. Определение. Вывод канонического уравнение параболы.
Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.
Расстояние от фокуса до директрисы – параметр параболы (p>0).-полуфокальный диаметр.
Парабола есть линия второго порядка.
М(х,у)
– произвольная точка параболы. Соединим
точку М с F,
проведем отрезок MN
перпендикулярно директрисе. Согласно
определению параболы MF=MN.
По формуле расстояния между 2 точкам
находим:
=>
=
=>
=>
Каноническое уравнение параболы: y2 = 2px.
Исследование общего уравнения линии 2 порядка в случае отсутствия члена с произведением текущих координат.
Сфера. Определение. Вывод канонического уравнения.
Сфера
радиуса R с
центром в точке S
(a; b; c):
Эллипсоид Каноническое
уравнение:
Цилиндрические поверхности.
Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую K, называется цилиндрической поверхностью или цилиндром при этом кривая К – направляющая цилиндра, а L – его образующая.
Эллиптический цилиндр
Эллиптическое
уравнение:
Частным случаем эллиптического цилиндра является круговой цилиндр, его уравнение x2 + y2 = R2. Уравнение x2=2pz определяет в пространстве параболический цилиндр.
Уравнение:
определяет в пространстве гиперболический
цилиндр.
Все эти поверхности называются цилиндрами второго порядка, так как их уравнения есть уравнения второй степени относительно текущих координат x, y, z.
Эллипсоиды.
Исследуем поверхность, заданную уравнением:
Рассмотрим сечения поверхности с плоскостями, параллельными плоскости xOy. Уравнения таких плоскостей: z=h,где h – любое число. Линия, получаемая в сечении, определяется двумя ур-ниями:
z=h .
Исследуем поверхность:
А)
если
то
Линия
пересечения поверхности с плоскостями
z=h
не существует.
Б)
если
,
линия
пересечения вырождается в две точки
(0,0,с), и (0,0,-с). Плоскости z
= c,
z
= - c
касается данной поверхности.
В)
если
,
то уравнения можно переписать в виде:
,
как видно, линия пересечения есть эллипс
с полуосями а1 =
,
b1
=
.
При этом, чем меньше h,
тем больше полуоси. При н=0 они достигают
своих наибольших значений. а1=а, b1=b.
Уравнения примут вид:
h=0.
Рассмотренные
сечения позволяют изобразить поверхность
как замкнутую овальную поверхность.
Поверхность называется эллипсоидами.,
если какие-либо полуоси равны, трехосный
эллипсоид превращается в эллипсоид
вращения, а если а=b=c,
то в сферу.