
- •Матрицы. Основные понятия. Линейные операции над матрицами и их свойства.
- •Определитель матрицы. Свойства определителей.
- •Миноры и алгебраические дополнения.
- •Теорема замещения.
- •Теорема аннулирования.
- •Некоторые методы вычисления определителей.
- •Умножение матриц. Свойства умножения.
- •Транспонирование матриц.
- •Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Нахождение обратной матрицы.
- •Матричная запись системы линейных уравнений и её решения.
- •Решение невырожденных линейных систем, формулы Крамера.
- •Ранг матрицы. Свойства ранга матрицы. Вычисление ранга матрицы с помощью элементарных преобразований.
- •Теорема Кронекера - Капелле. Решение произвольных линейных систем.
- •Система однородных линейных уравнений.
- •Решение систем линейных уравнений методом последовательного исключения неизвестных (метод Гаусса).
- •Размерность и базис линейного пространства.
- •Вектор. Проекция вектора на ось.
- •Теорема об единственности разложения вектора по базису. Координаты вектора. Декартова система координат.
- •Расстояние между двумя точками.
- •Деление отрезка в данном отношении.
- •Направление вектора в пространстве.
- •Скалярное произведение векторов и его свойства.
- •Механический смысл скалярного произведения.
- •Ортонормированный базис. Выражение скалярного произведения через координаты в ортонормированном базисе.
- •Векторное произведение векторов и его свойства.
- •Смешанное произведение векторов в координатах.
- •Условия коллинеарности, ортогональности, компланарности векторов.
- •Нормальное уравнение плоскости.
- •Общее уравнение плоскости. Частные случаи расположения плоскости.
- •Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости. Определение точек пересечения прямой и плоскости.
- •Окружность. Определение. Вывод канонического уравнения.
- •Эллипс. Определение. Вывод канонического уравнения. Исследование формыэллипса.
- •Гипербола. Определение. Вывод канонического уравнения гиперболы. Исследование формы гиперболы.
- •Парабола. Определение. Вывод канонического уравнение параболы.
- •Исследование общего уравнения линии 2 порядка в случае отсутствия члена с произведением текущих координат.
- •Сфера. Определение. Вывод канонического уравнения.
- •Цилиндрические поверхности.
- •Эллипсоиды.
- •Гиперболоиды.
- •Параболоиды.
- •Канонические поверхности.
- •Функция. Основные понятия. Способы её задания.
- •Числовая последовательность и её предел.
- •Последовательность. Теорема Больцано – Вейерштрасса.
- •Число е. Натуральные логарифмы.
- •Конечный предел функции.
- •Бесконечный предел функции.
- •Односторонние пределы.
- •Бесконечно малые и бесконечно большие функции. Связь между б.М и б.Б функциями.
- •Предел суммы, произведения, частного.
- •Теорема о промежуточной функции
- •Первый замечательны предел.
- •Второй замечательный предел.
- •Сравнение б.М функций. Эквивалентные б.М функции.
- •Свойства эквивалентные б.М функций.
- •Непрерывность функции в точке. Определение. Свойства функций, непрерывных в точке.
- •Непрерывность функции на отрезке.
- •Свойства функций, непрерывных в отрезке. Точки разрыва и их классификация.
- •Производная. Определение. Механический и геометрический смысл производной.
- •Дифференцируемость функции. Определение. Теорема о непрерывности дифференцируемой функции.
- •Основные правила дифференцируемости.
- •Производная сложной функции.
- •Производная обратной функции.
- •Гиперболические функции и их дифференцирование.
- •Дифференцирование функций, заданной неявно.
- •Дифференцирование функций, заданной параметрически.
- •Производные и дифференциалы высших порядков.
- •Теорема Ролля. Геометрический смысл теоремы Ролля.
- •Теорема Лагранжа. Геометрический смысл теоремы Лагранжа.
- •Теорема Коши
- •Правило Лопиталя и его применение к вычислению переводов.
- •Формула Тейлора и её приложение.
- •1Исследование ф-ций и построение их графиков с помощью дифференциального исчисления.
Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Нахождение обратной матрицы.
Пусть
есть матрица А – невырожденная.
А-1, A-1*A=A*A-1=E, где E –единичная матрица. A-1 имеет те же размеры, что и A.
Алгоритм нахождения обратной матрицы:
вместо каждого элемента матрицы аij записываем его алгебраическое дополнение.
аij
Аij
А* - союзная матрица.
транспонируем полученную союзную матрицу. А*Т
делим каждый элемент союзной матрицы на определитель матрицы А.
,
A-1
=
A*Т
Теорема: (об аннулировании определителя): сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда всегда равна нулю.
Матричная запись системы линейных уравнений и её решения.
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим
матрицу системы
и
матрицы столбцы неизвестных и свободных
членов
Найдем произведение
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или
короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть
определитель матрицы отличен от нуля
|A|
≠ 0. Тогда матричное уравнение решается
следующим образом. Умножим обе части
уравнения слева на матрицу A-1,
обратную матрице A:
.
Поскольку A-1A
= E и E∙X
= X, то получаем
решение матричного уравнения в виде X
= A-1B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.
Решение невырожденных линейных систем, формулы Крамера.
СЛАУ принято записывать в матричной форме, когда сами неизвестные не указываются, а указывается только матрица системы А и столбец свободных членов В.
Решение невырожденных СЛАУ методом Крамера:
Х=А-1*В
А-1=
X1= (A11b1 + A21b2 + …+An1bn)
Теорема: (Крамера): решение невырожденных уравнений АХ=В, можно записать так:
,
Ак получается из А путем замены к-го
столбца на столбец свободного члена
В.
Ранг матрицы. Свойства ранга матрицы. Вычисление ранга матрицы с помощью элементарных преобразований.
Максимальное число линейно-зависимых строк матрицы A наз. рангом матрицы и обознач r(a). Наибольшее из порядков миноров данной матрицы отличных от 0 наз рангом матрицы.
Свойства:
1)при транспонировании rang=const.
2)если вычеркнуть нулевой ряд, то rang=const;
3)rang=cost, при элементарных преобразованиях.
3)для вычисл ранга с помощью элементар преобраз матрица A преобраз в матриц B, ранг которой легко находится.
4)ранг треуг матрицы=числу ненулевых элем, располож на глав. диагоналях.
Методы нахождения ранга матрицы:
метод окаймляющих миноров
метод элементарных преобразований
Метод окаймляющих миноров:
метод окаймляющих миноров позволяет алгоритмизировать процесс нахождения ранг-матрицы и позволяет свести к минимуму количество вычисления миноров.
если в матрице все нулевые элементы, то ранг = 0
если есть хоть один ненулевой элемент => r(a)>0
теперь будем окаймлять минор М1, т.е. будем строить всевозможные миноры 2-ого порядка, ктр. содержат в себе i-тую строку и j-тый столбец, до тех пор, пока не найдем ненулевой минор 2-ого порядка.
М2 (i, i1, j.j1)
Дальше аналогично строим миноры 3-го порядка, окаймляющие М2 (минор), до тех пор, пока не получим минор, отличный от нуля.
Процесс будет продолжаться до одного из событий: 1. размер минора достигнет числа к.
на каком-то этапе все окаймленные миноры окажутся = 0.
В обоих случаях величина ранга-матрицы будет равна порядку большего отличного от нуля минора.
Метод элементарных преобразований: как известно, понятие треугольной матрицы определяется только для квадратных матриц. Для прямоугольных матриц аналогом является понятие трапецивидной матрицы.
Например:
ранг
= 2.