
- •Матрицы. Основные понятия. Линейные операции над матрицами и их свойства.
- •Определитель матрицы. Свойства определителей.
- •Миноры и алгебраические дополнения.
- •Теорема замещения.
- •Теорема аннулирования.
- •Некоторые методы вычисления определителей.
- •Умножение матриц. Свойства умножения.
- •Транспонирование матриц.
- •Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Нахождение обратной матрицы.
- •Матричная запись системы линейных уравнений и её решения.
- •Решение невырожденных линейных систем, формулы Крамера.
- •Ранг матрицы. Свойства ранга матрицы. Вычисление ранга матрицы с помощью элементарных преобразований.
- •Теорема Кронекера - Капелле. Решение произвольных линейных систем.
- •Система однородных линейных уравнений.
- •Решение систем линейных уравнений методом последовательного исключения неизвестных (метод Гаусса).
- •Размерность и базис линейного пространства.
- •Вектор. Проекция вектора на ось.
- •Теорема об единственности разложения вектора по базису. Координаты вектора. Декартова система координат.
- •Расстояние между двумя точками.
- •Деление отрезка в данном отношении.
- •Направление вектора в пространстве.
- •Скалярное произведение векторов и его свойства.
- •Механический смысл скалярного произведения.
- •Ортонормированный базис. Выражение скалярного произведения через координаты в ортонормированном базисе.
- •Векторное произведение векторов и его свойства.
- •Смешанное произведение векторов в координатах.
- •Условия коллинеарности, ортогональности, компланарности векторов.
- •Нормальное уравнение плоскости.
- •Общее уравнение плоскости. Частные случаи расположения плоскости.
- •Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости. Определение точек пересечения прямой и плоскости.
- •Окружность. Определение. Вывод канонического уравнения.
- •Эллипс. Определение. Вывод канонического уравнения. Исследование формыэллипса.
- •Гипербола. Определение. Вывод канонического уравнения гиперболы. Исследование формы гиперболы.
- •Парабола. Определение. Вывод канонического уравнение параболы.
- •Исследование общего уравнения линии 2 порядка в случае отсутствия члена с произведением текущих координат.
- •Сфера. Определение. Вывод канонического уравнения.
- •Цилиндрические поверхности.
- •Эллипсоиды.
- •Гиперболоиды.
- •Параболоиды.
- •Канонические поверхности.
- •Функция. Основные понятия. Способы её задания.
- •Числовая последовательность и её предел.
- •Последовательность. Теорема Больцано – Вейерштрасса.
- •Число е. Натуральные логарифмы.
- •Конечный предел функции.
- •Бесконечный предел функции.
- •Односторонние пределы.
- •Бесконечно малые и бесконечно большие функции. Связь между б.М и б.Б функциями.
- •Предел суммы, произведения, частного.
- •Теорема о промежуточной функции
- •Первый замечательны предел.
- •Второй замечательный предел.
- •Сравнение б.М функций. Эквивалентные б.М функции.
- •Свойства эквивалентные б.М функций.
- •Непрерывность функции в точке. Определение. Свойства функций, непрерывных в точке.
- •Непрерывность функции на отрезке.
- •Свойства функций, непрерывных в отрезке. Точки разрыва и их классификация.
- •Производная. Определение. Механический и геометрический смысл производной.
- •Дифференцируемость функции. Определение. Теорема о непрерывности дифференцируемой функции.
- •Основные правила дифференцируемости.
- •Производная сложной функции.
- •Производная обратной функции.
- •Гиперболические функции и их дифференцирование.
- •Дифференцирование функций, заданной неявно.
- •Дифференцирование функций, заданной параметрически.
- •Производные и дифференциалы высших порядков.
- •Теорема Ролля. Геометрический смысл теоремы Ролля.
- •Теорема Лагранжа. Геометрический смысл теоремы Лагранжа.
- •Теорема Коши
- •Правило Лопиталя и его применение к вычислению переводов.
- •Формула Тейлора и её приложение.
- •1Исследование ф-ций и построение их графиков с помощью дифференциального исчисления.
Односторонние пределы.
число А называется пределом функции слева в точке x0, если для любого число >0 существует число = ( )>0 такое, что при выполняется неравенство .
Предел слева записывают так:
Аналогично определяется предел функции справа:
.
Пределы функции слева и справа называются односторонними пределами.
Бесконечно малые и бесконечно большие функции. Связь между б.М и б.Б функциями.
Функция
называется бесконечно
большой при
,
если для
любого числа M>0
существует число
=
(М)>0,
что для всех х, удовлетворяющих
неравенству 0<
,
выполняется неравенство
.
Записывают
.
Коротко:
Функция
называется бесконечно
большой при
,
если для
любого числа M>0
найдется такое число N=N
(М)>0, что для всех х, удовлетворяющих
неравенству
,
выполняется неравенство
.
Коротко:
Всякая бесконечно большая функция в окрестности точки х0 является неограниченной в этой окрестности.
Бесконечно
малая функция:
Функция
называется бесконечно малой при
,
если
:
для любого числа
>0
найдется число
>0
такое, что для всех х, удовлетворяющих
неравенству 0<
,
выполняется неравенство
.
Теорема: алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.
Теорема: произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая.
Следствие: так как всякая б.м.ф. ограничена, то из теоремы вытекает произведение двух б.м.ф. есть функция бесконечно малая.
Следствие: произведение б.м.ф. на число есть функция бесконечно малая.
Теорема: частное от деления бесконечно малой функции на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая.
Теорема: если функция - бесконечно малая, то обратная ей функция – бесконечно большая и наоборот.
Теорема о разности между функцией и её пределом.
Если функция
имеет
предел
,
то разность между функцией и значением
предела есть функция, бесконечно малая
при
.
Ограниченная функция. Теорема об ограниченности функции.
Если
функция f(x) имеет
предел в точке a
,то
она ограниченна
в некоторой окрестности точки a.
Теорема о произведении б.м функции на ограниченную
Произведение бесконечно малой при функции на ограниченную в
некоторой окрестности точки а функцию есть бесконечно малая функция при .
Теорема о делении б.м функции на функцию, предел которой отличен от 0.
Теорема о единственности предела функции. Теорема о существовании предела.
Теорема о существовании предела.Функция не может иметь более одного предела.
Следствие. Если
две функции f(x)
и g(x)
равны в некоторой окрестности точки
,
за исключением, может быть, самой
точки
,
то либо они имеют один и тот же предел
при
,
либо обе не имеют предела в этой точке.
Если
последовательность монотонно возрастает
и ограниченна сверху, то она имеет
предел.
Теорема сравнения.
в теории дифференциальных уравнений- теорема, утверждающая наличие определенного свойства решений дифференциального уравнения (или системы дифференциальных уравнений) в предположении, что некоторым свойством обладает вспомогательное уравнение или неравенство (система дифференциальных уравнении пли неравенств).
1) Теорема Ш т у р м а: любое нетривиальное решение уравнения обращается в нуль на отрезке [t0, t1] не более т раз если этим свойством обладает уравнение и при .
2) Дифференциальное неравенство: решение задачи покомпонентно неотрицательно при если этим свойством обладает решение задачи и выполнены неравенства