
- •Основные особенности металлических конструкций и предъявляемые к ним требования.
- •Эксплуатационные и технические требования, предъявляемые к строительным конструкциям.
- •Расчет конструкций по предельным состояниям. Первая группа предельных состояний. Вторая группа предельных состояний.
- •Расчетное усилие. Расчетное сопротивление материала.
- •Нагрузки и воздействия. Поверхностные нагрузки. Постоянные нагрузки. Временные нагрузки. Временные длительные нагрузки. Кратковременные нагрузки.
- •6.Стальные конструкции. Способы производства стали. Качество стали. Спокойная сталь. Марки стали. Свойства стали. Термическая обработка стали.
- •7. Механические свойства сталей и стальных конструкций. Прочность, жесткость, упругость, пластичность, хрупкость.
- •Ударная вязкость стали. Схема образца для определения ударной вязкости. Схемы испытательных машин для создания ударной нагрузки.
- •9)Ползучесть сталей. Твердость сталей. Концентрация напряжений. Усталостное разрушение металла
- •10) Свариваемость стали. Коррозионной стойкости сталей. Сортамент строительных сталей. Сортамент прокатываемых профилей
- •6.1. Сталь листовая.
- •6.2. Профильная сталь.
- •6.4. Гнутые профили.
- •11. Расчет угловых швов при действии осевой силы.
- •12. Прямошовная электросварная стальная труба. Спиралешовная электросварная стальная труба.
- •13. Сварные соединения строительных конструкций. Технология сварки. Ручная электродуговая сварка
- •14. Автоматическая и полуавтоматическая сварка под слоем флюса
- •15. Типы сварных швов и соединений
- •16 Вопрос. Стыковые сварные соединения.
- •17 Вопрос включает в себя 3 последующих
- •18 Вопрос Расчет стыковых швов при действии осевой нагрузки.
- •21 Вопрос Расчет угловых швов при действии осевой силы.
- •19 Вопрос Расчет угловых швов при прикреплении уголков.
- •20 Вопрос Расчет угловых швов при действии изгибающего момента и поперечной силы.
- •20. Расчет угловых швов при действии изгибающего момента и поперечной силы.
- •21. Расчет угловых швов при действии осевой силы.
- •23. Расчет магистральных трубопроводов на прочность.
- •24. Нагрузки и воздействия, принимаемые при расчете трубопроводов.
- •25. Вес перекачиваемого (транспортируемого) газа.
- •26. Температурные воздействия на трубопровод.
- •27. Нормативные снеговые нагрузки.
- •28. Ветровые нагрузки.
- •29. Определение толщины стенки трубы магистрального трубопровода.
- •30. Определение напряжений в стенке трубопровода.
- •31) Выбор толщины стенки магистрального трубопровода.
- •32) Проверка трубопровода на отсутствие пластических деформаций. (Проверка прочности трубопровода.)
- •34) Деформации в прямых стержнях при растяжении – сжатии.
- •35) Сопротивление грунта продольным перемещениям трубы.
- •3 6. Определение продольного перемещения свободного конца трубы на участке подземного трубопровода.
- •37 Определение продольных перемещений подземного трубопровода при отсутствии участка предельного равновесия грунта.
- •38 Сопротивление грунта поперечным перемещениям трубы
- •39Определение продольных перемещений трубопровода в месте его сопряжения с компенсатором.
- •40Расчет компенсатора на жесткость и прочность.
- •41Метод определения податливости конструкции.
- •42)Определение податливости и жесткости п-образного компенсатора.
- •43) Расчет на прочность п-образного компенсатора.
- •44) Расчет на устойчивость изогнутого вверх участка трубопровода
- •45) Сопротивление грунта поперечным перемещениям трубы
- •46) Энергетический метод определения критической силы
- •Упрощенные зависимости для практических расчетов
- •1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- •1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- •Железобетонные конструкции
- •Арматура
- •1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- •Арматурные изделия, закладные детали и стыки
- •Свойства железобетона
- •Сжатие прямого железобетонного элемента
- •Напряжения и деформации в железобетоне при растяжении
- •52.Напряжения и деформации в железобетонном элементе при изгибе.
- •Железобетонные траверсы с одиночной арматурой
- •53. Напряжения и деформации в железобетонном элементе при изгибе.
- •Расчет траверсы с двойным армированием.
- •Конструирование железобетонных опор.
- •Конструирование стальных опор
- •Нагрузки и воздействия на отдельно стоящие опоры
- •57.Проверка двутавровой балки на прочность
- •5.3.1 Проверка двутавровой балки на прочность.
- •58.Сварные двутавровые балки. Проверка двутавровой балки на прочность.
- •5.3.2 Сварные двутавровые балки
- •5.3.3 Проверка общей устойчивости балки
- •5.3.4 Проверка жесткости балок
- •59. Расчет поясных швов сварного двутавра
- •5.3.5 Расчет поясных швов
- •60) Расчет сварных стыков двутавровых балок
- •5.3.6 Расчет сварных стыков двутавровых балок
- •61) Потеря устойчивости прямого стержня под действием осевой сжимающей силы. Критические напряжения
- •62)Расчет центрально сжатых колонн
- •6.1. Расчет центрально сжатых колонн
- •6.2. Расчет внецентренно сжатых колонн
- •64) Расчет базы колонны
- •6.3. Расчет базы колонны
- •65) Конструирование отдельно стоящего фундамента. Определение размеров подошвы фундамента
- •7. Расчет отдельно стоящего фундамента под колонну
- •7.1. Определение размеров подошвы фундамента
- •46. Расчетная схема отдельного фундамента
- •66) Расчет отдельно стоящего центрально-сжатого фундамента
- •Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- •67) Расчет отдельно стоящего центрально-сжатого фундамента
- •7.3. Расчет отдельно стоящего фундамента на продавливание
Расчетное усилие. Расчетное сопротивление материала.
Расчетное усилие вычисляется от суммы всех нагрузок
, (2.2)
где – нормативные усилия;
– коэффициент надежности по нагрузке, который учитывает возможность отклонения фактических нагрузок от их нормативных значений.
Расчетные усилия в курсе сопротивления материалов принято называть внутренними силовыми факторами или интегральными характеристиками напряжений. Они возникают в сечениях отдельных элементов строительных конструкций и зависят от характера и величины внешних нагрузок и воздействий. Если внешние силы сжимают или растягивают строительный элемент, то в его поперечных сечениях возникают продольные силы, если изгибают, то в поперечных сечениях необходимо искать изгибающий момент. Для определения нормативных усилий, как правило, используют метод сечений, подробно рассмотренный в курсе сопротивления материалов.
Несущая способность элементов строительных конструкций зависит от прочностных характеристик применяемых материалов и от выбранных размеров и формы поперечных сечений, т.е. от геометрических характеристик. В общем виде несущая способность конструкции может быть выражена в виде функции
, (2.3)
где – расчетное сопротивление материала;
– геометрические характеристики поперечных сечений (площадь при растяжении или сжатии, момент сопротивления при изгибе).
Студентам, изучившим курс сопротивления материалов, будет понятен такой пример оценки несущей способности элементов строительных конструкций
, (2.4)
где - максимальные нормальные напряжения в поперечном сечении стержня при растяжении сжатии или
- максимальные нормальные напряжения при изгибе стержня.
В этих выражениях продольная сила и изгибающий момент это внутренние силы, возникающие в поперечных сечениях стержней и зависящие от величины и характера приложения внешних нагрузок и воздействий. Они также являются интегральными характеристиками напряжений в поперечных сечениях стержней. Площадь поперечного сечения стержня и момент сопротивления это геометрические характеристики, которые зависят формы и размеров поперечного сечения стержня. Для простых сечений геометрические характеристики вычисляются по известным формулам, либо выбираются по таблицам для стандартных прокатных профилей.
При расчете строительных конструкций необходимо отличать нормативное сопротивление материалов и расчетное сопротивление материалов . Нормативное сопротивление материала отражает его механические свойства и, в первую очередь, зависит от технологии и качества производства материала. Строительные нормы устанавливают порядок назначения нормативного сопротивления на партию произведенного материала с учетом статистического характера его контроля и отбраковки. За нормативное сопротивление стали, например, принимаются предел текучести т или предел прочности , установленные соответствующими стандартами.