
- •Основные особенности металлических конструкций и предъявляемые к ним требования.
- •Эксплуатационные и технические требования, предъявляемые к строительным конструкциям.
- •Расчет конструкций по предельным состояниям. Первая группа предельных состояний. Вторая группа предельных состояний.
- •Расчетное усилие. Расчетное сопротивление материала.
- •Нагрузки и воздействия. Поверхностные нагрузки. Постоянные нагрузки. Временные нагрузки. Временные длительные нагрузки. Кратковременные нагрузки.
- •6.Стальные конструкции. Способы производства стали. Качество стали. Спокойная сталь. Марки стали. Свойства стали. Термическая обработка стали.
- •7. Механические свойства сталей и стальных конструкций. Прочность, жесткость, упругость, пластичность, хрупкость.
- •Ударная вязкость стали. Схема образца для определения ударной вязкости. Схемы испытательных машин для создания ударной нагрузки.
- •9)Ползучесть сталей. Твердость сталей. Концентрация напряжений. Усталостное разрушение металла
- •10) Свариваемость стали. Коррозионной стойкости сталей. Сортамент строительных сталей. Сортамент прокатываемых профилей
- •6.1. Сталь листовая.
- •6.2. Профильная сталь.
- •6.4. Гнутые профили.
- •11. Расчет угловых швов при действии осевой силы.
- •12. Прямошовная электросварная стальная труба. Спиралешовная электросварная стальная труба.
- •13. Сварные соединения строительных конструкций. Технология сварки. Ручная электродуговая сварка
- •14. Автоматическая и полуавтоматическая сварка под слоем флюса
- •15. Типы сварных швов и соединений
- •16 Вопрос. Стыковые сварные соединения.
- •17 Вопрос включает в себя 3 последующих
- •18 Вопрос Расчет стыковых швов при действии осевой нагрузки.
- •21 Вопрос Расчет угловых швов при действии осевой силы.
- •19 Вопрос Расчет угловых швов при прикреплении уголков.
- •20 Вопрос Расчет угловых швов при действии изгибающего момента и поперечной силы.
- •20. Расчет угловых швов при действии изгибающего момента и поперечной силы.
- •21. Расчет угловых швов при действии осевой силы.
- •23. Расчет магистральных трубопроводов на прочность.
- •24. Нагрузки и воздействия, принимаемые при расчете трубопроводов.
- •25. Вес перекачиваемого (транспортируемого) газа.
- •26. Температурные воздействия на трубопровод.
- •27. Нормативные снеговые нагрузки.
- •28. Ветровые нагрузки.
- •29. Определение толщины стенки трубы магистрального трубопровода.
- •30. Определение напряжений в стенке трубопровода.
- •31) Выбор толщины стенки магистрального трубопровода.
- •32) Проверка трубопровода на отсутствие пластических деформаций. (Проверка прочности трубопровода.)
- •34) Деформации в прямых стержнях при растяжении – сжатии.
- •35) Сопротивление грунта продольным перемещениям трубы.
- •3 6. Определение продольного перемещения свободного конца трубы на участке подземного трубопровода.
- •37 Определение продольных перемещений подземного трубопровода при отсутствии участка предельного равновесия грунта.
- •38 Сопротивление грунта поперечным перемещениям трубы
- •39Определение продольных перемещений трубопровода в месте его сопряжения с компенсатором.
- •40Расчет компенсатора на жесткость и прочность.
- •41Метод определения податливости конструкции.
- •42)Определение податливости и жесткости п-образного компенсатора.
- •43) Расчет на прочность п-образного компенсатора.
- •44) Расчет на устойчивость изогнутого вверх участка трубопровода
- •45) Сопротивление грунта поперечным перемещениям трубы
- •46) Энергетический метод определения критической силы
- •Упрощенные зависимости для практических расчетов
- •1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- •1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- •Железобетонные конструкции
- •Арматура
- •1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- •Арматурные изделия, закладные детали и стыки
- •Свойства железобетона
- •Сжатие прямого железобетонного элемента
- •Напряжения и деформации в железобетоне при растяжении
- •52.Напряжения и деформации в железобетонном элементе при изгибе.
- •Железобетонные траверсы с одиночной арматурой
- •53. Напряжения и деформации в железобетонном элементе при изгибе.
- •Расчет траверсы с двойным армированием.
- •Конструирование железобетонных опор.
- •Конструирование стальных опор
- •Нагрузки и воздействия на отдельно стоящие опоры
- •57.Проверка двутавровой балки на прочность
- •5.3.1 Проверка двутавровой балки на прочность.
- •58.Сварные двутавровые балки. Проверка двутавровой балки на прочность.
- •5.3.2 Сварные двутавровые балки
- •5.3.3 Проверка общей устойчивости балки
- •5.3.4 Проверка жесткости балок
- •59. Расчет поясных швов сварного двутавра
- •5.3.5 Расчет поясных швов
- •60) Расчет сварных стыков двутавровых балок
- •5.3.6 Расчет сварных стыков двутавровых балок
- •61) Потеря устойчивости прямого стержня под действием осевой сжимающей силы. Критические напряжения
- •62)Расчет центрально сжатых колонн
- •6.1. Расчет центрально сжатых колонн
- •6.2. Расчет внецентренно сжатых колонн
- •64) Расчет базы колонны
- •6.3. Расчет базы колонны
- •65) Конструирование отдельно стоящего фундамента. Определение размеров подошвы фундамента
- •7. Расчет отдельно стоящего фундамента под колонну
- •7.1. Определение размеров подошвы фундамента
- •46. Расчетная схема отдельного фундамента
- •66) Расчет отдельно стоящего центрально-сжатого фундамента
- •Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- •67) Расчет отдельно стоящего центрально-сжатого фундамента
- •7.3. Расчет отдельно стоящего фундамента на продавливание
Основные особенности металлических конструкций и предъявляемые к ним требования.
Металлические конструкции, характеризующиеся большим разнообразием систем и конструктивных форм, объединены двумя основными факторами, позволяющими изучать их как единый вид.
Во-первых, исходным материалом для всех конструкций является прокатный металл, выпускаемый по единому стандарту (сортаменту): лист, уголок, швеллер, двутавр, труба и т.п. Из этого материала компонуются разнообразные конструктивные формы.
Во-вторых, все конструкции объединены одним технологическим процессом их изготовления, в основе которого лежат холодная обработка металла (резка, гибка, образование отверстий и т.п.) и соединение деталей в конструктивные элементы и комплексы (сборочно-сварочные операции).
Металлические конструкции обладают следующими достоинствами, позволяющими применять их в разнообразных сооружениях.
Надежность металлических конструкций обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с расчетными предположениями. Материал металлических конструкций (сталь, алюминиевые сплавы) обладают большой однородностью структуры и достаточно близко соответствует расчетным предпосылкам об упругой или упругопластичной работе материала.
Легкость. Из всех изготовляемых в настоящее время несущих конструкций (железобетонные, каменные, деревянные) металлические конструкции являются самыми легкими.
Индустриальность. Металлические конструкции в основном изготовляются на заводах, оснащенных современным оборудованием, что обеспечивает высокую степень индустриальности их изготовления. Монтаж металлических конструкций также производится индустриальными методами — специализированными организациями с использованием высокопроизводительной техники.
Непроницаемость. Металлы обладают не только значительной прочностью, но и высокой плотностью — непроницаемостью для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления газгольдеров, резервуаров и т.п.
Металлические конструкции имеют и недостатки, ограничивающие их применение. Для устранения этих недостатков необходимо принимать специальные меры.
Коррозия. Незащищенная от действия влажной среды, а иногда (что еще хуже) атмосферы, загрязненной агрессивными газами, сталь коррозирует (окисляется), что постепенно приводит к ее полному разрушению. При неблагоприятных условиях это может произойти через два-три года. Хотя алюминиевые сплавы обладают значительно большей стойкостью против коррозии, при неблагоприятных условиях они также коррозируют. Хорошо сопротивляется коррозии чугун.
Повышение коррозионной стойкости металлических конструкций достигается включением в сталь специальных легирующих элементов, периодическим покрытием конструкций защитными пленками (лаки, краски и т.п.), а также выбором рациональной конструктивной формы элементов (без щелей и пазух, где могут скапливаться влага и пыль), удобной для очистки и защиты.
Небольшая огнестойкость. У стали при температуре 200°С начинает уменьшаться модуль упругости, а при t = 600°С сталь полностью переходит в пластическое состояние. Алюминиевые сплавы переходят в пластическое состояние ужу при t = 300°С. Поэтому металлические конструкции зданий, опасные в пожарном отношении (склады с горючими или легковоспламеняющимися материалами, жилые и общественные здания), должны быть защищены огнестойкими облицовками (бетон, керамика, специальные покрытия и т.п.).
При проектировании металлических конструкций должны учитываться следующие основные требования.
Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.
Экономия материала. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т.д.) и относительно высокой стоимостью.
Требовательность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их целиком или по частям (отправочными элементами) с применением соответствующих транспортных средств.
Технологичность. Конструкции должны проектироваться с учетом требований технологии изготовления и монтажа с ориентацией на наиболее современные и производительные технологические приемы, обеспечивающие максимальное снижение трудоемкости.
Скоростной монтаж. Конструкция должна соответствовать возможностям сборки ее в наименьшие сроки с учетом имеющегося монтажного оборудования.
Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии. Моральный износ связан с изменением условий эксплуатации.
Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами. Особенно существенно это требование для общественных зданий и сооружений.
Все эти требования удовлетворяются конструкторами на основе выработанных наукой и практикой принципов отечественной школы проектирования и основных направлений ее развития.
Основным принципом отечественной школы проектирования является достижение трех главных показателей: экономии стали, повышения производительности труда при изготовлении, снижения трудоемкости и сроков монтажа, которые и определяют стоимость конструкции. Несмотря на то, что эти показатели часто при реализации вступают в противоречие один с другим (так, например, наиболее трудоемкой в изготовлении и монтаже), опыт развития металлических конструкций подтверждает возможность реализации этого принципа.
Экономия металла в металлических конструкциях достигается реализацией следующих основных направлений: применения в строительных конструкциях низколегированных и высокопрочных сталей, использования наиболее экономичных прокатных и гнутых профилей, изыскания и внедрения в строительство современных эффективных конструктивных форм и систем (пространственных, предварительно напряженных, висячих, трубчатых и т.п.), совершенствования методов расчета и изыскания оптимальных конструктивных решений с использованием электронно-вычислительной техники.
По всем этим направлениям в нашей стране ведется большая исследовательская работа, что позволяет систематически уменьшать удельные затраты металла (на 1 м² площади здания, на единицу выпускаемой продукции и т.п.).
Эффективно и комплексно производственные требования удовлетворяются на основе типизации конструктивных элементов и целых сооружений.
Типизация металлических конструкций получила у нас весьма широкое развитие. Разработаны типовые решения часто повторяющихся конструктивных элементов — колонн, ферм, подкрановых балок, оконных и фонарных переплетов. В этих типовых решениях унифицированы размеры элементов и сопряжений. Для некоторых элементов разработаны стандарты.
Разработаны типовые решения таких сооружений, как радиомачты, башни, опоры линий электропередачи, резервуары, газгольдеры, пролетные строения мостов, некоторые виды промышленных зданий и сооружений и даже целые «модули» — производственные здания из легких металлических конструкций комплексной поставки, включающей несущие и ограждающие конструкции, и т.п.
Типовые решения разработаны на основе применения оптимальных с точки зрения затрат материала размеров элементов, технологии их изготовления и возможностей транспортирования.
Типизация и проводимая на ее основе унификация и стандартизация обеспечивают большую повторяемость, серийность изготовления конструктивных элементов и их деталей на заводах и, следовательно, способствуют повышению производительности труда, сокращению сроков изготовления на основе эффективного использования более совершенного оборудования и специальных технологических приспособлений (кондукторов, копиров, кантователей и т.п.). Типизация, унификация и стандартизация создают благоприятные условия для разработки и внедрения особенно эффективного поточного метода изготовления и монтажа металлических конструкций.
Типовые проекты обеспечивают экономию металла, упорядочивают проектирование, повышают его качество и сокращают сроки строительства.
Ведущим принципом скоростного монтажа является сборка конструкций в крупные блоки на земле с последующим подъемом их в проектное положение с минимальным объемом монтажных работ наверху. Типизация создает предпосылки для сокращения сроков монтажа и снижения его трудоемкости, так как повторяющиеся виды конструкций и их сопряжений позволяют лучше использовать монтажное оборудование и совершенствовать процесс монтажа.