
- •Определители и их свойства
- •2. Миноры и алгебраические дополнения
- •3. Методы вычисления определителей.
- •4.Обратная матрица. Теорема о существовании обратной матрицы.
- •5.Элементарные преобразования матрицы.
- •6.Ранг матрицы. Правило вычисления ранга матрицы.
- •7.Системы линейных уравнений
- •9. Решение произвольных систем линейных уравнений.
- •11. Метод Гаусса.
- •12. Вектора. Координаты вектора в декартовой системе координат.
- •13.Направляющие косинусы вектора.
- •14. Скалярное произведение векторов. Его свойства.
- •15.Векторное произведение векторов. Его свойства.
- •16.Смешанное произведения векторов.
- •17.Общее уравнение плоскости.
- •18.Уравнение плоскости проходящей через три точки и в отрезках.
- •20. Уравнение прямой, проходящей через две точки.
- •21.Уравнением прямой с угловым коэффициентом k.
- •22.Угол между прямыми на плоскости.
- •24.Гипербола. Каноническое уравнение.
- •25.Парабола. Каноническое уравнение.
- •27.Пределы функций, их свойства.
- •28.Основные теоремы о пределах
- •29,30 . Замечательные пределы
- •31. Непрерывность функции в точке
- •32. Точки разрыва функции
- •33.Производная и её геометрический смысл.
- •34. Основные правила дифференцирования.
- •38.Дифференциал функции. Геометрический смысл дифференциала.
- •Геометрический смысл дифференциала
- •40.Возрастание и убывание функций. Точки экстремума.
- •41.Необходимое условие существования экстремума.
- •42.Критические точки. Достаточные условия существования экстремума.
- •43.Исследование функции на экстремум с помощью производных высших порядков.
- •44.Выпуклость и вогнутость кривой. Точки перегиба.
- •45.Асимптоты
- •46. Функции нескольких переменных (Определение, примеры).
- •47.Пределы функций нескольких переменных и их свойства.
- •48.Частное и полное приращение функций нескольких переменных.
- •52.Полный дифференциал.
- •55.Экстремум функции нескольких переменных. 56.Необходимые и достаточные условия существования безусловного экстремума.
- •58.Первообразная.
- •59.Неопределенный интеграл и его свойства.
- •60. Простейшие приемы интегрирования. Интегрирование по частям.
- •61.Простейшие приемы интегрирования. Интегрирование способом замены переменной.
- •64.Интегрирование рациональных функций
- •65. Интегрирование иррациональных функций.
- •67.Задачи, приводящие к понятию определенного интеграла.
- •68. Верхние и нижние интегральные суммы.
- •70.Основные свойства определенного интеграла
- •71.Геометрический и физический смысл определенного интеграла.
- •72.Формула Ньютона-Лейбница.
- •74. Несобственные интегралы первого рода
- •80. Двойной интеграл.
- •81.Вычисление двойного интеграла
- •82.Числовой ряд, сумма ряда.
- •83.Необходимое условие сходимости ряда.
- •84.Признаки сравнения. Признак Даламбера.
- •87.Знакочередующийся ряд. Теорема Лейбница.
- •89.Интервал и радиус сходимости степенного ряда.
- •Дифференциальные уравнения первого порядка. Общее и частное решения.
- •92.Однородные уравнения первого порядка.
- •93.Линейные однородные дифференциальные уравнения. Решение уравнения.
- •8. Формулы Крамера
- •36.Дифференцирование логарифмических, показательных и степенных функций.
- •37.Дифференцирование обратных функций и функций заданных параметрически.
- •39. Формула Тейлора.
- •53. Касательная плоскость и нормаль к поверхности.
36.Дифференцирование логарифмических, показательных и степенных функций.
,
,
37.Дифференцирование обратных функций и функций заданных параметрически.
Если
дифференцируемая функция y=f(x),a<x<b
имеет
однозначную непрерывную
обратную
функцию
x=g(x)
и
,
то
39. Формула Тейлора.
Пусть функция ƒ(х) есть многочлен Рn(х) степени n:ƒ(х)=Рn(х)=а0+а1х+а2х2+...+аnхn.Преобразуем этот многочлен также в многочлен степени n относительно разности х-х0, где х0 — произвольное число, т. е. представим Рn(х) в видеРn(х)=А0+A1(x-х0)+А2(х-х0)2+...+Аn(х-х0)n (.1)Для нахождения коэффициентов А0, А1 ,..., Аn продифференцируем n раз равенство (1):
Р'n(х)=А1+2А2(х-x0)+3A3(x-x0)2+...+nAn(x-x0)n-1,
Рn''(х)=2А2+2•3А3(х-х0)+...+n(n-1)Аn(х-х0)n-2,
Рn"'(х)=2•3А3+2•3•4А4(х-х0)+...+n(n-1)(n-2)Аn(х-х0)n-3,
- - - - - - - - - - - - - - - - - -
Рn(n)(х)=n(n-1)( n-2)...2•1Аn
Подставляя х=х0 в полученные равенства и равенство (.1), имеем:
Подставляя найденные значения A0,A1,...,An в равенство (.1), получим разложение многочлена n-й степени Рn(х) по степеням (х-х0):
54. Формула Тейлора для функции нескольких переменных.
Пусть
функция f(x)
задана
в области R и
имеет в R все
частные производные до порядка m+1 включительно.
Пусть
и
--
две точки области ,
такие что весь отрезок между ними
целиком лежит в R .
Тогда для некоторой точки
этого
отрезка имеет место равенство
|
|
|
|
При m=1 получается линейное
приближение функции f :
|
|
При m=2 получается квадратичное приближение функции f :
53. Касательная плоскость и нормаль к поверхности.
Нормалью
к поверхности в
некоторой ее точке называется прямая,
направляющий вектор которой является
нормальным к поверхности в этой точке
и которая проходит через эту
точку.Канонические уравнения
нормали можно
представить в виде
|
|
|
|

|
|
|
Если точка поверхности является особой, то в этой точке нормальный к поверхности вектор может не существовать, и, следовательно, поверхность может не иметь нормали и касательной плоскости.