
- •Определители и их свойства
- •2. Миноры и алгебраические дополнения
- •3. Методы вычисления определителей.
- •4.Обратная матрица. Теорема о существовании обратной матрицы.
- •5.Элементарные преобразования матрицы.
- •6.Ранг матрицы. Правило вычисления ранга матрицы.
- •7.Системы линейных уравнений
- •9. Решение произвольных систем линейных уравнений.
- •11. Метод Гаусса.
- •12. Вектора. Координаты вектора в декартовой системе координат.
- •13.Направляющие косинусы вектора.
- •14. Скалярное произведение векторов. Его свойства.
- •15.Векторное произведение векторов. Его свойства.
- •16.Смешанное произведения векторов.
- •17.Общее уравнение плоскости.
- •18.Уравнение плоскости проходящей через три точки и в отрезках.
- •20. Уравнение прямой, проходящей через две точки.
- •21.Уравнением прямой с угловым коэффициентом k.
- •22.Угол между прямыми на плоскости.
- •24.Гипербола. Каноническое уравнение.
- •25.Парабола. Каноническое уравнение.
- •27.Пределы функций, их свойства.
- •28.Основные теоремы о пределах
- •29,30 . Замечательные пределы
- •31. Непрерывность функции в точке
- •32. Точки разрыва функции
- •33.Производная и её геометрический смысл.
- •34. Основные правила дифференцирования.
- •38.Дифференциал функции. Геометрический смысл дифференциала.
- •Геометрический смысл дифференциала
- •40.Возрастание и убывание функций. Точки экстремума.
- •41.Необходимое условие существования экстремума.
- •42.Критические точки. Достаточные условия существования экстремума.
- •43.Исследование функции на экстремум с помощью производных высших порядков.
- •44.Выпуклость и вогнутость кривой. Точки перегиба.
- •45.Асимптоты
- •46. Функции нескольких переменных (Определение, примеры).
- •47.Пределы функций нескольких переменных и их свойства.
- •48.Частное и полное приращение функций нескольких переменных.
- •52.Полный дифференциал.
- •55.Экстремум функции нескольких переменных. 56.Необходимые и достаточные условия существования безусловного экстремума.
- •58.Первообразная.
- •59.Неопределенный интеграл и его свойства.
- •60. Простейшие приемы интегрирования. Интегрирование по частям.
- •61.Простейшие приемы интегрирования. Интегрирование способом замены переменной.
- •64.Интегрирование рациональных функций
- •65. Интегрирование иррациональных функций.
- •67.Задачи, приводящие к понятию определенного интеграла.
- •68. Верхние и нижние интегральные суммы.
- •70.Основные свойства определенного интеграла
- •71.Геометрический и физический смысл определенного интеграла.
- •72.Формула Ньютона-Лейбница.
- •74. Несобственные интегралы первого рода
- •80. Двойной интеграл.
- •81.Вычисление двойного интеграла
- •82.Числовой ряд, сумма ряда.
- •83.Необходимое условие сходимости ряда.
- •84.Признаки сравнения. Признак Даламбера.
- •87.Знакочередующийся ряд. Теорема Лейбница.
- •89.Интервал и радиус сходимости степенного ряда.
- •Дифференциальные уравнения первого порядка. Общее и частное решения.
- •92.Однородные уравнения первого порядка.
- •93.Линейные однородные дифференциальные уравнения. Решение уравнения.
- •8. Формулы Крамера
- •36.Дифференцирование логарифмических, показательных и степенных функций.
- •37.Дифференцирование обратных функций и функций заданных параметрически.
- •39. Формула Тейлора.
- •53. Касательная плоскость и нормаль к поверхности.
93.Линейные однородные дифференциальные уравнения. Решение уравнения.
имеет вид a (x) y' + b (x) y + c(x) = 0 (1) a (x) 0 .Разделим обе части уравнения на a(x). y' + p(x) y + q(x) = 0, где p(x) = , q(x) = (2).
Будем искать решения уравнения (2) в виде произведения двух неизвестных функций: y = u·v.Подставим y = u·v в (2) , (3).Выберем функцию u так, чтобы : , , , , .Подставим полученную функцию u(х) в (3) и найдем (х).Подставим функции u(х) и (х) в выражение для у: - общее решение линейного дифференциального уравнения первого порядка.
8. Формулы Крамера
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно).
Описание метода
Д
ля
системы n
линейных уравнений с n
неизвестными (над произвольным полем)
с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде
(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:
В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов).
19. Параметрическое и каноническое уравнение прямой.
Пусть
прямая проходит через точку M1 (x1, y1, z1)
и параллельна вектору
(m ,n, l).
Составим уравнение этой прямой.
-
каноническое уравнение прямой в
пространстве.
Пусть
прямая проходит через две
точки M1 (x1, y1, z1)
и M2(x2, y2, z2).Составим
ее уравнение.
-
уравнение прямой, проходящей через две
данные точки.
26. Функция. Характеристики поведения. Сложная функция.
Пусть Х и Y - некоторые множества.Определение. Если каждому элементу xХ ставится в соответствие по некоторому правилу единственный элемент yY , то говорят, что на множестве Х задана функция (отображение) со значениями в множестве Y :f : XY, y=f(x).Множество Х называется областью определения функции и обозначаетсяDom(f) или D(f), множество Y называется множеством значений функции и обозначается Im(f) или I(f).
Основные характеристики функции1. Функция у=ƒ(х), определенная на множестве D, называется четной, если " xÎ D выполняются условия -хєD и ƒ(-х)=ƒ(х); нечетной, если " xєD выполняются условия -хєD и ƒ(-х)=-ƒ(х).График четной функции симметричен относительно оси Оу, а нечетной — относительно начала координат.2. Пусть функция у=ƒ(х) определена на множестве D и пусть D 1єD. Если для любых значений х 1;x2єD1 аргументов из неравенства x1<x2 вытекает неравенство: ƒ(x 1)<ƒ(х2), то функция называется возрастающей на множестве D 1; f(x1) ≤ ƒ(х2), то функция называется неубывающей на множестве D1; f(x1)>ƒ(х2), то функция называется убывающей на множестве D1; ƒ(х1)≥ƒ(x2), то функция называется невозрастающей на множестве D1.
Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D1, причем для " xÎ D1соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).Переменную u=φ(х) называют промежуточным аргументом сложной функции.
35. Дифференцирование тригонометрических и обратных им функций.