
- •1. Теоретическая основа начального курса математики.
- •2. Цели и содержание курса математики начальной школы в различных системах обучения.
- •3. Сравнительный анализ организации и средств обучения математике в различных системах обучения.
- •4. Методы, формы обучения математике в разных системах обучения.
- •5. Урок математики. Подготовка учителя к уроку.
- •6. Общая методика изучения чисел в разных системах обучения. Особенности подготовительного периода.
- •7. Сравнительно-сопоставительный анализ изучения однозначных чисел в различных системах обучения.
- •8. Изучение двузначных чисел в различных системах обучения.
- •9. Изучение трехзначных чисел в различных системах обучения.
- •10. Изучение многозначных чисел в традиционной системе обучения. Особенности изучения этой темы в других системах.
- •11. Нумерация и сравнение многозначных чисел. Увеличение и уменьшение числа в 10, 100, 1000 раз.
- •12. Вычислительные навыки. Этапы формирования вычислительных навыков. Организация деятельности учителя и учащихся на каждом этапе.
- •13. Общая методика изучения арифметических действий. Сложение и вычитание однозначных чисел в различных системах обучения.
- •14. Сложение и вычитание в концентре «Сотня».
- •15. Устные вычисления в концентре «Тысяча».
- •16. Особенности изучения письменного сложения и вычитания в различных методических системах.
- •17. Изучение табличного умножения и деления. Особенности изучения этой темы.
- •18. Изучение свойств умножения и деления.
- •19. Внетабличное деление.
- •20. Внетабличное умножение.
- •21. Деление с остатком в различных системах обучения.
- •22. Устные приемы умножения многозначных чисел.
- •23. Письменное умножение многозначных чисел.
- •24. Обучение письменному делению многозначных чисел (деление на однозначное число), в том числе и в системе развивающего обучения.
- •25. Деление на двузначные и трёхзначные числа.
- •26. Арифметические задачи в начальном курсе математики. Общая методика обучения решения задач. Особенности методики в системах развивающего обучения.
- •27. Интерпретация условия задачи.
- •28. Классификация простых задач. Задачи, раскрывающие смысл операции сложения и вычитания.
- •29. Задачи, раскрывающие связь между сложением вычитанием.
- •30. Задачи на увеличение (уменьшение) числа на несколько единиц (в прямой и косвенной форме).
- •31. Задачи, раскрывающие конкретный смысл операции умножения.
- •32. Задачи, раскрывающие смысл операции деления.
- •33. Задачи, раскрывающие связь между умножением и делением (на нахождение неизвестного множителя, на нахождение неизвестного делителя, делимого).
- •34. Задачи на увеличение (уменьшение числа в несколько раз).
- •35. Задачи на кратное сравнение.
- •36. Обучение учащихся решению составных задач. Методика обучения учащихся решению задач в два действия.
- •37. Изучение задач на пропорциональные величины:
- •38. Задачи на движение.
- •39. Общая характеристика алгебраического материала в курсе математики начальной школы. Формирование понятия «выражение» в различных системах обучения.
- •40. Формирование понятия переменной.
- •41. Ошибки в порядке выполнения арифметических действий и пути их предупреждения (п.А. Ивашова. Начальная школа, № 4 – 1988г.).
- •42. Изучение уравнений и неравенств в разных системах обучения.
- •43. Общая характеристика геометрического материала в начальном курсе математики. Ознакомление учащихся с геометрическими фигурами.
- •44. Величины в начальной школе. Общая методика формирования понятия величины (этапы, методика работы на каждом этапе).
- •45. Формирование понятия длины.
- •46. Формирование понятия площади.
- •47. Формирование понятия времени.
- •48. Понятие «доли» и «дроби». Методика работы с ними в различных системах обучения.
- •49. Особенности альтернативных систем методик курса математики начальной школы.
11. Нумерация и сравнение многозначных чисел. Увеличение и уменьшение числа в 10, 100, 1000 раз.
Основные задачи учителя при изучении темы «нумерация многозначных чисел» - сформировать понятие о новой счетной единице – тысяче как единице второго класса, опираясь на понятие класса, научить читать и записывать многозначные числа, обобщить знания детей о нумерации целых неотрицательных чисел. На этапе подготовки к изучению темы необходимо закрепить знания о соотношении известных разрядных единиц, о десятичном составе трехзначных чисел, о натуральной последовательности чисел в пределах 1000, о принципе записи 3-хзначных чисел. Изучение нумерации многозначных чисел начинают с того, что повторяют, как можно получить 1000 (приписывают по 1, начиная с 997, выписывается ряд чисел до 1000 включительно и приходят к выводу, что 10 единиц одного разряда образуют другой разряд). Основными наглядными пособиями являются счеты и нумерационная таблица.
II I
Кл. тыс. |
Кл. ед. |
||||
с |
д |
ед |
с |
д |
ед |
|
3 |
5 |
1 |
3 |
8 |
I класс – класс единиц, II класс – класс тысяч. Далее изучают числа II класс (круглые тысячи). Нужно обратить внимание на особенности записи чисел II класса (три нуля обозначают отсутствие едмниц I, II, III разрядов, т.е. отсутствие I класса). Далее учащиеся учатся читать и записывать многозначные числа в пределах миллиона и более подробно останавливаются на десятичном составе чисел.
Увеличение и уменьшение числа в 10, 100, 1000 раз основывается на применении имеющихся у детей знаний о поместном значении цифр при записи чисел. Учитель организует наблюдение за изменением значения цифры при перемещении ее в записи числа, которое происходит, если приписать к числу или отбросить один, два, три нуля. Так, приписав справа нуль к числу 5, дети отмечают, что теперь цифра 5 стоит на втором месте, считая справа налево, и обозначает десятки, а 5 десятков больше, чем 5 единиц, в 10 раз. Аналогично сравнивают еще несколько чисел и делают вывод, что если припишем к числу 0 справа, то оно увеличится в 10 раз. Так же подводят к выводу об увеличении числа в 100 и 1000 раз. Рассматривая уменьшение числа в 100, 1000 раз, берутся числа, оканчивающиеся нулями, и, получив из них отбрасыванием одного, двух, трех нулей новые числа, производят сравнение и делают выводы. Эти знания учащиеся сразу же применяют к решению примеров на умножение и деление чисел не 10, 100 и 1000. Закреплению знаний по нумерации помогают упражнения в преобразовании натуральных чисел и величин – замена мелких единиц крупными и обратно.
12. Вычислительные навыки. Этапы формирования вычислительных навыков. Организация деятельности учителя и учащихся на каждом этапе.
Основу вычислительных навыков составляет осознанное и прочное усвоение приемов устных и письменных вычислений. Научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости для дальнейшего обучения. Действующие на сегодняшний день программы по математике обеспечивают достаточный уровень формирования вычислительных навыков школьников. Изучение вычислительного приема происходит после того, как школьники усвоят его теоретическую основу (определения арифметических действий, свойства действий и следствия, вытекающие из них). В начальном курсе математики предусмотрен такой порядок введения вычислительных приемов, при котором постепенно вводятся приемы, включающие большее число операций, а приемы, усвоенные ранее, включаются в новые в качестве основных операций.
Вычислительный навык - это высокая степень овладения вычислительными приёмами. Приобрести вычислительные навыки значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия и выполнять эти операции достаточно быстро. Полноценный вычислительный навык характеризуется правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом, прочностью.
Характеристики вычислительного навыка:
- Правильность - ученик правильно находит результат арифметического действия, то есть правильно выбирает и выполняет операции, составляющие приём.
- Осознанность - ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения, в любой момент может объяснить, как он решал и почему так можно решать.
- Рациональность - ученик выбирает для данного случая более рациональный приём, то есть выбирает те из возможных операций, выполнения которых легче других и быстрее приводит к результату.
- Обобщенность - ученик может применить приём вычисления к большому числу случаев, то есть способен перенести приём вычисления на новые случаи.
- Автоматизм - ученик выполняет и выделяет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операций. - Прочность - ученик сохраняет сформированные вычислительные навыки на длительное время. Вычислительный навык можно считать эффективным, если в рамках данного способа вычислений получение правильного результата достигается минимизацией затрат умственных ресурсов.
Формирование вычислительных умений и навыков — сложный длительный процесс, эффективность которого во многом зависит от индивидуальных особенностей ребенка, уровня его подготовки и способов организации вычислительной деятельности. При выборе способов организации вычислительной деятельности учителю необходимо отдавать предпочтение обучающим заданиям, в которых доминирует познавательная мотивация, ориентироваться на развивающий характер работы, учитывать индивидуальные особенности ребенка, его жизненный опыт, особенности детского мышления. Вычислительные задания должны характеризоваться вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графически символических). На сегодняшний день, работая в любой системе обучения, учитель может и должен организовать работу по формированию вычислительных умений и навыков у учащихся таким образом, чтобы удовлетворить всем выше перечисленным требованиям современной школы.
Этапы:
1. Подготовка к введению нового приёма. Создается готовность к усвоению вычислительного приёма, а именно, учащиеся должны усвоить те теоретические положения, на которых основывается приём вычислений, а также овладеть каждой операцией, составляющей приём.
2. Ознакомление с вычислительным приёмом. На этом этапе ученики усваивают суть приёма: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия. При введении большинства вычислительных приёмов важно использовать наглядность
3. Закрепление знаний приёма и выработка вычислительного навыка. Ученики должны твердо усвоить систему операций, составляющие приём, и быстро выполнить эти операции; то есть овладеть вычислительным навыком. На всех стадиях формирования вычислительных навыков решающую роль играют упражнения на применение вычислительных приёмов. Важно, чтобы было достаточное число упражнений, чтобы они были разнообразными как по числовым данным, так и по форме. Необходимое условие формирования вычислительных навыков - умение учителя организовать внимание детей. Особенно важно организовать внимание в начале урока. На формирование вычислительных навыков большое влияние оказывает навыки беглого устного счёта. Проведение устного счёта в начале урока активизирует мыслительную деятельность, развивает память, внимание, автоматизирует навык.