- •6) Аналитическая группировка. Признак-фактор и признак-результат. П2
- •7) Комбинационная группировка по двум признакам и анализ ее результатов на предмет выявления взаимосвязи между признаками. П2
- •8) Дискретный и непрерывный вариационные ряды. Понятие частоты и частости групп. Накопленные частоты (частости) и кумулятивные ряды п 3
- •9) Характеристики центра распределения. Вычисление средней арифметической для несгруппированых и сгруппированых данных п 4
- •Средняя арифметическая
- •Медиана Ме(X)
- •10) Понятие медианы. Вычисление медианы по сгруппированым данным п 4
- •11) Понятие моды. Вычисление моды по сгруппированым данным. П 4
- •Соотношения между средней арифметической, медианой и модой
- •12) Показатели вариации. Дисперсия и ее вычисления для несгруппированых и сгруппированых данных. Среднее квадратичное отклонение и коэффициент вариаций. П 5
- •13) Абсолютные и относительные величины. Среднее значение относительных величин п 6
- •14)Ряды динамики. Анализ временных рядов. Моментные и интервальные временные ряды
- •15) Определение среднего уровня ряда для интервальных и моментных рядов.
- •16) Показатели динамики (абсолютный прирост, коэффициент роста , коэффициент прироста) цепные и базисные.
- •18) Выделение тренда. Сглаживание и выравнивание. П 7
- •19 Сглаживание временного ряда методом скользящего среднего п 7
- •20, Аналитическое выравнивание временного ряда. Метод наименьших квадратов. П 7
- •21,Линейная модель тренда , оценка параметров методом наименьших квадратов. П 7
21,Линейная модель тренда , оценка параметров методом наименьших квадратов. П 7
Линейная модель тренда
Модуль Обобщенные линейные модели (GLZ) позволяет анализировать как линейные, так и нелинейные эффекты для любого количества и типа предикторов с дискретной или непрерывной зависимой переменной (включая множественную логит, пробит модели, распознавание сигналов и многие другие). Кроме того, в этом модуле реализованы разнообразные типы анализов, такие как биномиальная и множественная логит и пробит регрессия или Теория определения сигнала (SDT).
Модуль GLZ вычислит все стандартные итоговые статистики, включая критерии оценки правдоподобия, статистики Вальда для значимых эффектов, оценки параметров, их стандартные ошибки, доверительные интервалы и т.д. Интерфейс, способы задания плана и использование программы аналогичны модулям GLM, GRM и PLS.
Пользователь может легко задать ANOVA или ANCOVA-подобные планы, планы поверхности отклика, смешанные планы и т.д.; поэтому, даже у новичков не возникнет трудностей с применением обобщенных линейных моделей к анализу данных. Кроме того, модуль GLZ предоставляет обширный выбор инструментов проверки модели, таких как таблицы и графики различных статистик остатков или выбросов (включая исходные остатки, остатки Пирсона, сумму квадратов остатков, стьюдентизированные остатки Пирсона, стьюдентизированные суммы квадратов остатков, остатки правдоподобия, дифференциальные статистики Хи-квадрат, дифференциальную сумму квадратов, обобщенные расстояния Кука и т. д.
оценка параметров методом наименьших квадратов
Модуль Общие модели частных наименьших квадратов (PLS) представляет обширный выбор алгоритмов для решения одномерных и многомерных задач по методу частных наименьших квадратов. PLS вычисляет все стандартные результаты, как для анализа частных наименьших квадратов. Также, в этом модуле представлено множество средств интерпретации результатов и, в частности, графического представления данных, которые обычно не доступны в других приложениях.
Например, Вы можете воспользоваться такими опциями, как график значений параметра как функции числа компонент, двухмерные графики для всех входных статистик (параметров, факторов и т.д.), двухмерные графики для всех статистик остатков и т.д. Поскольку модуль PLS аналогичен по своему интерфейсу модулям GLM, GRM и GLZ, для Вас не составит трудности построить модель в одном модуле и быстро проанализировать данные с помощью этой же модели в PLS. Уникальный гибкий интерфейс позволит даже начинающим пользователям использовать эти мощные инструменты для анализа своих задач.
Метод частных наименьших квадратов – это мощная технология добычи данных, особенно хорошо подходит для нахождения меньшего количества размерностей в большом количестве предикторов или переменных отклика. Подобные методы анализа линейных систем стали популярны только в последние несколько лет, поэтому многие алгоритмы и статистики по-прежнему находятся на стадии исследования.
