- •1. Теплотехнические измерения на тес. Информационно-измерительные системы в составе асу тп тес
- •2. Унификация средств измерений. Гсп.
- •3. Измерение температуры на тес. Температурные шкалы.
- •4. Жидкостные стеклянные термометры. Принцип действия, достоинства и недостатки
- •5,6,7 Жидкостные, газовые, конденсационные манометрические термопреобразователи. Принцип действия, достоинства и недостатки.
- •8. Термоэлектрические термопреобразователи. Принцип действия, тэдс, градуировочная характеристика, типы тэп.
- •9. Дилатометрические и биметаллические термопреобразователи. Принцип действия, достоинства и недостатки. Дилатометрические термометры
- •Биметаллические термометры
- •10. Включение измерительного прибора в цепь тэп. Термобатарея и дифференциальный тэп.
- •11.Конструктивные особенности тэп. Инерционность тэп.
- •12. Погрешности тэп от непостоянства температуры "холодных" спаев и способы их устранения.
- •13. Милливольтметры (принцип действия и работа прибора). Типы милливольтметров.
- •14. Включение милливольтметра в цепь тэп. Выбор милливольтметров.
- •15. Компенсационный метод измерения температуры. Принципиальная электрическая схема переносного потенциометра. Типы потенциометров.
- •16. Автоматические электронные потенциометры. Принципиальная схема потенциомера ксп-4. Одноканальные измерения температуры и регистраторы рп-160.
- •17. Особенности измерения температуры на аэс. Измерение температуры оболочек твэлов.
- •18. Электрические термопреобразователи сопротивления. Принцип действия, типы тпс, достоинства и недостатки.
- •19. Измерение сопротивления тпс уравновешенным измерительным мостом (2-х и 3-х приводные схемы).
- •20. Измерение сопротивления тпс неуравновешенным измерительным мостом.
- •21. Логометры. Принцип действия, конструктивные особенности, упрощенная принципиальная схема логометра.
- •23. Автоматические электронные мосты. Принципиальная схема моста ксм-1.
- •24. Погрешности лучистым теплообменом, возникающие при измерении стационарных температур и способы их уменьшения.
- •25. Погрешность теплоотводом, возникающая при измерении стационарных температур, и способы ее уменьшения.
- •26. Особенности измерения температуры металла на тэс.
- •27. Классификация пирометров и законы излучения, используемые при конструировании пирометров.
- •28. Оптические пирометры. Конструктивные особенности, достоинства и недостатки.
- •29. Радиационные пирометры. Конструктивные особенности, достоинства и недостатки.
- •30.Фотоэллектрические пирометры. Принципиальная схема и работа пирометра.
- •31. Цветовые пирометры. Принцип действия и типы пирометров.
- •32. Измерение давлений и разряжений. Классификация приборов.
- •33. Жидкостные приборы измерения давления и разряжения.
- •34.Типы пружинных манометров. Манометры с трубчатыми манометрическими пружинами. Установка манометров с трубчатыми манометрическими пружинами.
- •35. Мембранные и сильфонные манометры. Достоинства и недостатки.
- •36. Трубчатые пружинные манометры с дистанционной передачей показаний дифференцыально-трансформаторной системы.
- •37. Пьезоэлектрические манометры. Принцип действия и конструктивные особенности приборов.
- •38,45 Тензометричеекие манометры «сапфир-22ди(дд)».
- •39. Сильфонные манометры с дистанционной передачей показаний, использующие электросиловые линейные преобразователи.
- •40. Измерение расхода жидкости, газа и пара на тэс. Классификация расходомеров. Пневмометрические расходомеры (достоинства и недостатки, принцип действия.).
- •41 Измерение расхода при помощи дроссельных преобразователей расхода. Принцип действия, расходная харрактеристика. Особенности выбора и монтажа нормализированных сужающих устройств.
- •42. Типы стандартных и нестандартных сужающих устройств.
- •47. Электтюмагнитные расходомеры с постоянным магнитным полем. Принцип действия, достоинства и недостатки приборов.
- •48. Электромагнитные расходомеры с переменным магнитным полем. Принцип действия, достоинства и недостатки приборов.
- •49. Ультразвуковые расходомеры. Принцип действия, достоинства и недостатки приборов. Типы расходомеров.
- •50. Особенности измерения расхода тепла на тэц с использованием электромагнитных расходомеров.
- •51. Методы измерения физических величин.
- •52. Качественные характеристики средств измерений
39. Сильфонные манометры с дистанционной передачей показаний, использующие электросиловые линейные преобразователи.
40. Измерение расхода жидкости, газа и пара на тэс. Классификация расходомеров. Пневмометрические расходомеры (достоинства и недостатки, принцип действия.).
Два типа приборов измеряющих расход:
Приборы количества – приборы измеряющие количество вещества протекающего через прибор
Расходомеры – приборы измеряющие расход
Типы и конструктивная особенность преброзователей расхода
В зависимости от применяемого метода расходомеры бывают:
Напорные – измеряют расход по средней скорости потока протекающего через сечение
Рд v2ρ/2g ,Па vср = 1,41 К ( ρд/ ρ)1/2
Дроссельные преоброзователи расхода, расходомеры переменного перепада давления, используються зависиморсть перепада давления на сужающих устройствах.
Ротаметры – приборы постоянного перепада давления
Тахометрические приборы использует изменение скорости вращения турбины от скорости среды
Электрические расходомеры
Электромагнитные расходомеры
Ультра звуковые расходомеры
Вихревые расходомеры
Калориметрические расходомеры
41 Измерение расхода при помощи дроссельных преобразователей расхода. Принцип действия, расходная харрактеристика. Особенности выбора и монтажа нормализированных сужающих устройств.
Метод измерения расхода по перепаду давления в сужающем устройстве основан на зависимости перепада давления в неподвижном сужающем устройстве, устанавливаемом в трубопроводе, от расхода измеряемой среды. Это устройство следует рассматривать как первичный преобразователь расхода. Создаваемый в сужающем устройстве перепад давления измеряется дифманометром (см. § 11.2), шкала которого градуируется в единицах расхода. При необходимости дистанционной передачи показаний диф-манометр должен быть снабжен преобразователем, который линией связи соединяется со вторичным прибором, градуированным в единицах расхода.
Рассматриваемый принцип измерения заключается в том, что при протекании потока через отверстие сужающего устройства повышается скорость потока по сравнению со скоростью до сужения. Увеличение скорости, а следовательно, и кинетической энергии вызывает уменьшение потенциальной энергии и соответственно статического давления. Расход может быть определен по перепаду давления Ар, измеренному дифманометром в соответствии с градуировочной характеристикой Ap=/(Q). Использование рассматриваемого метода измерения требует выполнения определенных условий: характер движения потока до и после сужающего устройства должен быть турбулентным и стационарным; поток должен полностью заполнять все сечение трубопровода; фазовое состояние потока не должно изменяться при его течении через сужающее устройство; во внутренней полости трубопровода до и после сужающего устройства не образуются осадки и другие виды загрязнений; на поверхностях сужающего устройства не образуются отложения, изменяющие его геометрию; пар является перегретым, при этом для него справедливы все положения, касающиеся измерения расхода газа.
В качестве сужающих устройств (дроссельные расходомеры жидкости)для измерения расхода жидкостей, газов и пара используются 1) стандартные диафрагмы,2) стандартнве сопла и значительно реже 3) стандартные сопла Вентури.
Особенности выбора и установки на трубопроводе сужающих устройств Для установки сужающего устройства должен быть выдержан идеально ровный участок: 10 диаметров до и 10 диам. После не должны отличатся от среднего значения более чем на 0.1
