- •1. Химия, как одна из наук о природе. Предмет и задачи химии.
- •2. Основные законы стехиометрии.
- •3. Понятие о растворах. Виды растворов.
- •4. Растворение. Растворимость. Гидратная теория д.И. Менделеева.
- •5.Способы выражения состава растворов.
- •6. Свойства растворов неэлектролитов. Законы Генри, Рауля, Вант-Гоффа.
- •9. Константа и степень электролитической диссоциации. Активность и ионная сила.
- •10.Вода как слабый электролит. Ионное произведение воды.
- •11. PH растворов сильных и слабых кислот и оснований
- •12.Гидролиз солей. Типы гидролизующихся солей. Константа и степень гидролиза.
- •13. Буферные растворы: их состав и применение
- •14. Буферные системы организма
- •Фосфатная буферная система
- •Белковая буферная система
- •Гемоглобиновая буферная система
- •15. Основные понятия химической термодинамики. Типы термодинамических систем.
- •16. Первый и второй законы химической термодинамики. Внутренняя энергия, энтальпия,энтропия.
- •17. Тепловой эффект химической реакции. Закон Гесса. Экзо- и эндотермические процессы.
- •18. Определение скорости химической реакции в гомогенных и гетерогенных системах.
- •19.Зависимость скорости химической реакции от концентраций реагирующих веществ. Закон действия масс.
- •20. Зависимость скорости химической реакции от температуры и природы реагирующих веществ. Правило Вант-Гоффа. Энергия активации.
- •22. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •23) Ядерная модель атома Резерфорда
- •24) Строение атома по н.Бору. Постулаты Бора.
- •25. Квантово-механическая модель атома.
- •26. Типы атомных орбиталей. Характеристика квантовых чисел.
- •27.Заполнение электронами орбиталей в многоэлектронных атомах. Принцип Паули, правило Хунда, правило Клечковского.
- •28. Основные характеристики химической связи: энергия связи, кратность связи, длина связи, полярность связи.
- •Полярность связи
- •29.Метод валентных связей для описания образования химической связи в молекулах. Гибридизация атомных орбиталей.
- •30.Метод молекулярных орбиталей для описания образования химической связи в молекулах.
- •31. Основные характеристики молекул: полярность и поляризуемость молекул.
- •33. Ионная связь. Полярность связи.
- •34. Металлическая связь. Общие свойства веществ с металлической кристаллической решеткой.
- •35. Водородная связь и ее роль в живых системах.
- •36.Виды межмолекулярного взаимодействия:ориентационное, индукционное, дисперсионное.
- •37. Комплексные соединения. Координационная теория Вернера.
- •38. Типы комплексных соединений. Номенклатура комплексных соединений.
- •39. Классификация комплексных соединений
- •40 Устойчивость комплексных соединений. Диссоциация комплексных соединений. Константы нестойкости и устойчивости комплексных соединений.
- •41. Биологическая роль комплексных соединений. Металлоферменты
- •43 Электродные потенциалы и электродвижущие силы
- •44 Водородный электрод. Гальванические элементы.
- •45.Окислительно- восстановительные потенциалы. Направление овр
- •46.Электролиз. Вида электролиза.
- •47.Химические источники электрической энергии. Гальванические элементы и аккамуляторы.
- •48. Коррозия металлов. Виды коррозионного разрушения. Защита от коррозии. Химическая коррозия
- •Примеры коррозии
- •49. Гетерогенное равновесие. Растворимость малорасторимых соединений.
- •50. Произведение растворимости малорастворимых соединений. Условия образования и растворения осадков
- •51. Гетерогенные равновесия «раствор-газ» «раствор-осадок» в организме в норме и паталогии
- •Вопрос 52: Водород. Физико-химические свойства. Вода в природе и как неотъемлемая среда биосистем.
- •Вопрос 53: Физико-химические свойства воды. Основные показатели качества природных вод.
- •54 Вопрос: Изотопы водорода в природе. Тяжёлая вода и её влияние на организм.
- •56. Биологическая роль ионов щелочных металлов и применение их соединений в медицинской практике
- •57. Общая характеристика элементов 2 а группы. Жесткость природных вод.
- •58. Соединения элементов 2 а группы в медицине. Биологическая роль кальция и магния
- •59. Изотопы. Радиоактивные изотопы в медицине. Проблема стронция 90
- •60. Общая характеристика 3 а группы. Бор и аллюминий в медицине
- •61.Общая характеристика 4 а группы. Углерод, его соединения, аллотропные модификации. Круговорот углерода
- •63. Общая характеристика элементов 4 а группы. Физико-химические свойства. Применнение в медицине. Силикагели как адсорбенты.
- •65. Общая характеристика элементов vа группы. Азот соединения азота. Химические превращения соединений азота в атмосфере и биосфере.
- •66. Общая характеристика элементов vа группы. Соединения азота как медицинские препараты. Аммиак, соли аммония, мочевина, мочевая кислота как продукты метаболизма организма.
- •67. Общая характеристика элементов главной подгруппы V группы
- •69.Общая характеристика элементов VI группы
- •Вопрос 73. Общая характеристика элементов 7а группы. Фтор, хлор, бром, йод. Галогены и их соединения в природе.
- •Вопрос 74. Общая характеристика элементов 7а группы. Биологическая роль и применение в медицине галогенов и их соединений.
- •Вопрос 75 Общая характеристика элементов 8а группы. Связь хим свойств со строением их атомов. Возможность образования соединений с другими элементами. Применение в медицинской практике.
- •77. Свойства металлов подгруппы цинка
- •78 Металлы III группы главной подгруппы
- •79.Общая хар-ка элементов 4б группы.Титан, цирконий, гафний.Нахождение в природе.Применение в мед.Практике.
- •80.Общая хар-ка элементов 5б группы. Ванадий, ниобий, тантал..Нахождение в природе.Применение в мед.Практике.
- •81. Общая хар-ка элементов 6б группы. Хром, молибден, вольфрам.Важнейшие соединения. Участие в хим.Процессах организма.
- •Соединения двухвалентного молибдена.
- •Соединения трехвалентного молибдена.
- •Соединения четырехвалентного молибдена.
- •Важнейшие соединения вольфрама. Соединения двухвалентного вольфрама.
- •Соединения четырехвалентного вольфрама.
- •Соединения пятивалентного вольфрама.
- •Соединения шестивалентного вольфрама.
18. Определение скорости химической реакции в гомогенных и гетерогенных системах.
Скорость химической реакции - число элементарных актов реакции, происходящих в единицу времени, в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных реакций) раздела фаз. Элементарный акт реакции состоит в таком соударении и дальнейшем взаимодействии молекул, таком перераспределении электронной плотности, образовании новых и разрыве старых химических связей, когда образуются новые по составу и строению вещества. Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы. Гетерогенной — система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства системы изменяются скачком. Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор хлорида натрия, сульфата магния, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы: из газовой фазы в первом примере и из водного раствора во втором. Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Например, при сливании (и перемешивании) растворов серной кислоты и тиосульфата натрия помутнение, вызываемое появлением серы, наблюдается во всем объеме раствора: +SH2SO4+Na2S2O3= Na2SO4+Н2O+SO2 Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Например, растворение металла в кислоте: Fe+2HCl=FeCl2 + H2 может протекать только на поверхности металла, потому что только здесь соприкасаются друг с другом оба реагирующих вещества. В связи с этим скорость гомогенной реакции и скорость гетерогенной реакции определяются различно, Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы.
Скорость гетерогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы.
Гомогенные- протекают во всем объеме фазы.
где
Vгхр-скорость
гомоген.хим.реакц.; n2-конечное
количество вещества; n1-
начальное количество вещества; Т-время;
V-объем
фазы; ед.измерения [моль/л*с]
Гомогенные- происходят на поверхности раздела двух фаз.
-
изменение кол-ва вещ-ва; изм.площади
поверхности; изм. времени. Единица
измерения [моль/м2*с]
19.Зависимость скорости химической реакции от концентраций реагирующих веществ. Закон действия масс.
Необходимым условием того, чтобы между частицами(атомами, молекулами, ионами) исходных веществ произошло химич.взаимодействие, является их столкновение друг с другом. Т.е. частицы должны сблизиться друг с другом настолько,что чтобы атомы одной из них испытывали бы действие электрических полей, создаваемых атомами другой. Только при этом станут возможны те переходы электронов и перегруппировки атомов, в результате которых образуются молекулы новых веществ-продуктов реакции. Поэтому скорость реакции пропорциональна числу соударений, которые претерпевают молекулы реагирующих веществ. Число соударений тем больше, чем выше концентрация каждого из исходных веществ,т.е. чем больше произведение концентраций реагирующих веществ. Так, скорость элементарной реакции А+В=С пропорциональна произведению концентрации вещества А на концентрацию вещества В,т.е. вероятности столкновения частиц. Обозначая концентрации веществ А и В соответственно через сА и сВ можно записать V= K* сА * сВ
Где V- скорость хим.реакции; K – константа скорости реакции, не зависит от концентрации веществ, но зависит от их природы и температуры; сА и сВ – концентрации реагентов.
Полученное соотношение выражает закон действия масс для хим.реакции, протекающей при столкновении двух частиц (К.Гульдберг и П.Вааге, 1867г.):
-для реакций, происходящих при соударении двух частиц, скорость прямопропорциональна концентрациям этих частиц(вещ-в).
Закон действующих масс справедлив лишь для наиболее простых по своему механизму реакций, протекающих в газах или растворах. Часто уравнение реакции не отражает ее механизма. Сложные реакции можно представить как совокупность простых процессов, протекающих последовательно или параллельно. Закон действующих масс справедлив для каждой отдельной стадии реакции, но не для всего взаимодействия в целом. Та стадия процесса, скорость которой минимальна, лимитирует (определяет) скорость реакции, в общем. Поэтому закон действующих масс для лимитирующей стадии процесса приложим и ко всей реакции в целом. В качестве примера приложения закона действия масс можно привести уравнение зависимости скорости реакции окисления оксида азота (II) от концентраций NO и O2: 2NO + O2= 2NO2
