Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия конечный документ_)))))))))).docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
533.77 Кб
Скачать

16. Первый и второй законы химической термодинамики. Внутренняя энергия, энтальпия,энтропия.

В каждом теле, в каждом веществе в скрытом виде заключена внутренняя энергия, которая складывается из энергии движения и взаимодействия атомов, молекул, ядер и других частиц, внутриядерную и другие виды энергии, кроме кинетической энергии движения системы, и потенциальной энергии ее положения. Абсолютную величину внутренней энергии определить невозможно. Она представляет собой способность системы к совершению работы или передаче теплоты. Однако можно определить ее изменение U при переходе из одного состояния в другое:

ΔU = U2 - U1 ,

где U2 и U1- внутренняя энергия системы в конечном и начальном состояниях. Если ΔU > 0 –внутренняя энергия системы возрастает, если ΔU < 0 – внутренняя энергия системы убывает. U – термодинамическая функция состояния, так как ее количество не будет зависеть от пути и способа перехода системы, а будет определяться лишь разностью в этих состояниях. При переходе из одного состояния в другое система может обмениваться с окружающей средой веществом или энергией в форме теплоты и работы.

Теплота Q представляет собой количественную меру хаотического движения частиц данной системы или тела. Энергия более нагретого тела в форме теплоты передается менее нагретому телу. При этом не происходит переноса вещества.

Работа А является количественной мерой направленного движения частиц, мерой энергии, передаваемой от одной системы к другой за счет перемещения вещества от одной системы к другой под действием тех или иных сил, например гравитационных. Теплоту и работу измеряют в джоулях (Дж), килоджоулях (кДж) и мегаджоулях (МДж). Положительной считается работа, совершаемая системой против внешних сил (А > 0) и теплота, подводимая к системе (Q > 0). Теплота и работа зависят от способа проведения процесса, т.е. они являются функциями пути.

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики:

Q = ΔU + А.

Если к системе подводится теплота Q, то она расходуется на изменение внутренней энергии системы ΔU и на совершение системой работы А над окружающей средой.

Теплоту и работу можно измерить, отсюда,

ΔU = Q – А.

Первый закон термодинамики является формой выражения закона сохранения энергии. Согласно этому закону, энергия не может ни создаваться, ни исчезать, но может превращаться из одной формы в другую. Его справедливость доказана многовековым опытом человечества.

Если система осуществляет переход из одного состояния в другое при постоянном объеме ( реакция протекает в автоклаве), то работа расширения системы

А = рΔV = 0

и

Qv = ΔU = U2U1,

т.е. если реакция протекает при постоянном объеме, то выделение или поглощение теплоты Q связано с изменением внутренней энергии системы.

Если на систему не действуют ни какие другие силы, кроме постоянного давления, т.е. химический процесс осуществляется в изобарных условиях, и единственным видом работы является работа расширения, то первый закон термодинамики запишется:

Qp = ΔU + pΔV.

Подставив ΔU = U2U1, получим:

Qp = U2U1 + pV2 ‑ pV1 = (U2 + pV2) ‑ (U1 + pV1).

Характеристическая функция

U + pV = H

называется энтальпией системы. Энтальпия – показывает убыль хим. энергии в продуктах по сравнению с исходными веществами. Она равна по величине и обратна по знаку тепловому эффекту хим. реакции.

<0-для экзотермических процессов.

> 0 – для эндотермических процессов.

стандартная энтальпия образования в-ва.

- стандартная энтальпия сгорания вещества.

Qp = H2 - H1, и Qp = ΔH.

В случае изобарического процесса теплота, подведенная к системе, равна изменению энтальпии системы.

Абсолютное значение энтальпии системы определить невозможно, но экспериментально можно определить Qp, т.е. изменение энтальпии ΔН, при переходе из одного состояния в другое. Н -это термодинамическая функция состояния. Если ΔН > 0 - энтальпия системы возрастает, если ΔН < 0-энтальпия системы уменьшается, т.е. теплота выделяется системой.

Как и другие характеристические функции, энтальпия зависит от количества вещества, поэтому ее изменение ΔН, обычно относят к 1 моль и выражают в кДж/моль.

2 закон термодинамики

В изолированных системах самопроизвольно протекают только те процессы, которые сопровождаются ростом энтропии системы.

В справочниках приводится, так называемая, стандартная энтропия вещества, находящегося в стандартном состоянии при температуре 298,15 К. Т.к. энтропия является функцией состояния системы, то для реакции, протекающей в стандартных условиях,

bB + dD = lL + mM

изменение энтропии (энтропия реакции) можно рассчитать как разницу между суммарной энтропией продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов в соответствии с уравнением

,

где nj, mi – коэффициенты уравнения реакции для продуктов и исходных веществ;

      - стандартные энтропии продуктов реакции и исходных веществ, соответственно.

Энтропия растет (ΔS > 0) в процессах, связанных с повышением температуры, при плавлении вещества, при испарении, при расширении системы, растворении. В этих случаях увеличение числа частиц и энергии теплового движения увеличивает беспорядок и, следовательно, увеличивается энтропия, и наоборот – охлаждение, конденсация, кристаллизация, реакции с уменьшением объема – сопровождаются уменьшением энтропии (ΔS < 0). "Носителями" энтропии являются газы, обладающие высокими значениями энтропии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]