- •1. Химия, как одна из наук о природе. Предмет и задачи химии.
- •2. Основные законы стехиометрии.
- •3. Понятие о растворах. Виды растворов.
- •4. Растворение. Растворимость. Гидратная теория д.И. Менделеева.
- •5.Способы выражения состава растворов.
- •6. Свойства растворов неэлектролитов. Законы Генри, Рауля, Вант-Гоффа.
- •9. Константа и степень электролитической диссоциации. Активность и ионная сила.
- •10.Вода как слабый электролит. Ионное произведение воды.
- •11. PH растворов сильных и слабых кислот и оснований
- •12.Гидролиз солей. Типы гидролизующихся солей. Константа и степень гидролиза.
- •13. Буферные растворы: их состав и применение
- •14. Буферные системы организма
- •Фосфатная буферная система
- •Белковая буферная система
- •Гемоглобиновая буферная система
- •15. Основные понятия химической термодинамики. Типы термодинамических систем.
- •16. Первый и второй законы химической термодинамики. Внутренняя энергия, энтальпия,энтропия.
- •17. Тепловой эффект химической реакции. Закон Гесса. Экзо- и эндотермические процессы.
- •18. Определение скорости химической реакции в гомогенных и гетерогенных системах.
- •19.Зависимость скорости химической реакции от концентраций реагирующих веществ. Закон действия масс.
- •20. Зависимость скорости химической реакции от температуры и природы реагирующих веществ. Правило Вант-Гоффа. Энергия активации.
- •22. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •23) Ядерная модель атома Резерфорда
- •24) Строение атома по н.Бору. Постулаты Бора.
- •25. Квантово-механическая модель атома.
- •26. Типы атомных орбиталей. Характеристика квантовых чисел.
- •27.Заполнение электронами орбиталей в многоэлектронных атомах. Принцип Паули, правило Хунда, правило Клечковского.
- •28. Основные характеристики химической связи: энергия связи, кратность связи, длина связи, полярность связи.
- •Полярность связи
- •29.Метод валентных связей для описания образования химической связи в молекулах. Гибридизация атомных орбиталей.
- •30.Метод молекулярных орбиталей для описания образования химической связи в молекулах.
- •31. Основные характеристики молекул: полярность и поляризуемость молекул.
- •33. Ионная связь. Полярность связи.
- •34. Металлическая связь. Общие свойства веществ с металлической кристаллической решеткой.
- •35. Водородная связь и ее роль в живых системах.
- •36.Виды межмолекулярного взаимодействия:ориентационное, индукционное, дисперсионное.
- •37. Комплексные соединения. Координационная теория Вернера.
- •38. Типы комплексных соединений. Номенклатура комплексных соединений.
- •39. Классификация комплексных соединений
- •40 Устойчивость комплексных соединений. Диссоциация комплексных соединений. Константы нестойкости и устойчивости комплексных соединений.
- •41. Биологическая роль комплексных соединений. Металлоферменты
- •43 Электродные потенциалы и электродвижущие силы
- •44 Водородный электрод. Гальванические элементы.
- •45.Окислительно- восстановительные потенциалы. Направление овр
- •46.Электролиз. Вида электролиза.
- •47.Химические источники электрической энергии. Гальванические элементы и аккамуляторы.
- •48. Коррозия металлов. Виды коррозионного разрушения. Защита от коррозии. Химическая коррозия
- •Примеры коррозии
- •49. Гетерогенное равновесие. Растворимость малорасторимых соединений.
- •50. Произведение растворимости малорастворимых соединений. Условия образования и растворения осадков
- •51. Гетерогенные равновесия «раствор-газ» «раствор-осадок» в организме в норме и паталогии
- •Вопрос 52: Водород. Физико-химические свойства. Вода в природе и как неотъемлемая среда биосистем.
- •Вопрос 53: Физико-химические свойства воды. Основные показатели качества природных вод.
- •54 Вопрос: Изотопы водорода в природе. Тяжёлая вода и её влияние на организм.
- •56. Биологическая роль ионов щелочных металлов и применение их соединений в медицинской практике
- •57. Общая характеристика элементов 2 а группы. Жесткость природных вод.
- •58. Соединения элементов 2 а группы в медицине. Биологическая роль кальция и магния
- •59. Изотопы. Радиоактивные изотопы в медицине. Проблема стронция 90
- •60. Общая характеристика 3 а группы. Бор и аллюминий в медицине
- •61.Общая характеристика 4 а группы. Углерод, его соединения, аллотропные модификации. Круговорот углерода
- •63. Общая характеристика элементов 4 а группы. Физико-химические свойства. Применнение в медицине. Силикагели как адсорбенты.
- •65. Общая характеристика элементов vа группы. Азот соединения азота. Химические превращения соединений азота в атмосфере и биосфере.
- •66. Общая характеристика элементов vа группы. Соединения азота как медицинские препараты. Аммиак, соли аммония, мочевина, мочевая кислота как продукты метаболизма организма.
- •67. Общая характеристика элементов главной подгруппы V группы
- •69.Общая характеристика элементов VI группы
- •Вопрос 73. Общая характеристика элементов 7а группы. Фтор, хлор, бром, йод. Галогены и их соединения в природе.
- •Вопрос 74. Общая характеристика элементов 7а группы. Биологическая роль и применение в медицине галогенов и их соединений.
- •Вопрос 75 Общая характеристика элементов 8а группы. Связь хим свойств со строением их атомов. Возможность образования соединений с другими элементами. Применение в медицинской практике.
- •77. Свойства металлов подгруппы цинка
- •78 Металлы III группы главной подгруппы
- •79.Общая хар-ка элементов 4б группы.Титан, цирконий, гафний.Нахождение в природе.Применение в мед.Практике.
- •80.Общая хар-ка элементов 5б группы. Ванадий, ниобий, тантал..Нахождение в природе.Применение в мед.Практике.
- •81. Общая хар-ка элементов 6б группы. Хром, молибден, вольфрам.Важнейшие соединения. Участие в хим.Процессах организма.
- •Соединения двухвалентного молибдена.
- •Соединения трехвалентного молибдена.
- •Соединения четырехвалентного молибдена.
- •Важнейшие соединения вольфрама. Соединения двухвалентного вольфрама.
- •Соединения четырехвалентного вольфрама.
- •Соединения пятивалентного вольфрама.
- •Соединения шестивалентного вольфрама.
13. Буферные растворы: их состав и применение
Буферные растворы— растворы с определённой устойчивой концентрацией водородных ионов; смесь слабой кислоты и её соли (напр., СН3СООН и CH3COONa) или слабого основания и его соли (напр., NH3 и NH4CI). Величина рН буферного раствора мало изменяется при добавлении небольших количеств свободной сильной кислоты или щёлочи, при разбавлении или концентрировании. Буферные растворы широко используют в различных химических исследованиях.
Буферная емкость р-ра – число моль сильной кислоты или щелочи, которое нужно прибавить к буферному р-ру, чтобы pH+1.
Буферные растворы играют важную роль во многих технологических процессах. Они используются, например, при электрохимическом нанесении защитных покрытий, в производстве красителей, фотоматериалов и кожи. Кроме того, буферные растворы широко используются в химическом анализе и для калибровки рН-метров.
Многие биологические и другие системы зависят от содержащихся в них буферных растворов, которые поддерживают постоянство рН. Например, рН крови в организме человека поддерживается в пределах от 7,35 до 7,45, несмотря на то, что содержание диоксида углерода и, следовательно, угольной кислоты в крови может варьировать в широких пределах. Содержащийся в крови буфер представляет собой смесь фосфата, гидрокарбоната и белков. Буферы, состоящие из белков, поддерживают рН слез равным 7,4. В бактериологических исследованиях для поддержания постоянства рН культурных сред, используемых с целью выращивания бактерий, тоже приходится использовать буферные растворы. Буферные растворы широко применяют в химическом анализе в тех случаях, когда по условиям опыта химическая реакция должна протекать при соблюдении точного значения, не меняющегося при разбавлении раствора или при добавлении к нему других реагентов. Например, при проведении реакций окисления—восстановления, при осаждении сульфидов, гидроокисей, карбонатов, хроматов, фосфатов и др.
pH буферных растворов
Слабая
кислота pH=pK
к-ты
Слабая
основания pH=
14- pK
осн +
14. Буферные системы организма
Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.
Н+ + буфер- <==> Н-буфер
В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.
Бикарбонат является ключевым компонентом главной буферной системы организма. Она состоит из двух кислотно-основных частей, находящихся в динамическом равновесии: угольная кислота / бикарбонатный ион и бикарбонатный ион / карбонатный ион.
Кислоты, образующиеся в процессе метаболизма, нейтрализуются бикарбонатом. При рН около 7.4 в организме преобладает бикарбонатный ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после своего образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. В зависимости от условий, обе реакции могут идти в том или ином направлении.
Если в закрытой системе появляется избыток углекислого газа, то равновесие этих реакций смещается влево, что приводит к незначительному снижению рН. Особенность бикарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с бикарбонатом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход бикарбонатного буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество бикарбоната в организме восстанавливается.
Небикарбонатные буферные системы активно функционируют в крови и внутри клеток. Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.
Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с бикарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании. Приведённый пример иллюстрирует процесс восстановления небикарбонатных буферных систем с помощью бикарбонатной буферной системы.
Этот процесс можно рассматривать как цепь реакций, в результате которых ион водорода перемещается между различными буферными системами, в конечном итоге достигая бикарбонатного буфера.
Бу́ферные систе́мы кро́ви— физиологические системы и механизмы, обеспечивающие кислотно-основное равновесие в крови. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов.
Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37-7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены:
бикарбона́тная бу́ферная систе́ма;
фосфа́тная бу́ферная систе́ма;
белко́вая бу́ферная систе́ма;
гемоглоби́новая бу́ферная систе́ма.
Помимо этих систем также активно участвуют дыхательная и мочевыделительная системы.[
Бикарбонатная буферная система
Мощнейшая и, вместе с тем, самая управляемая система внеклеточной жидкости и крови, на долю которой приходится около 10 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H2CO3, являющуюся источником протона и бикарбонат-аниона HCO3−, выполняющего роль акцептора протона:
H2CO3 ↔ H+ + HCO3−.
