
- •1. Химия, как одна из наук о природе. Предмет и задачи химии.
- •2. Основные законы стехиометрии.
- •3. Понятие о растворах. Виды растворов.
- •4. Растворение. Растворимость. Гидратная теория д.И. Менделеева.
- •5.Способы выражения состава растворов.
- •6. Свойства растворов неэлектролитов. Законы Генри, Рауля, Вант-Гоффа.
- •9. Константа и степень электролитической диссоциации. Активность и ионная сила.
- •10.Вода как слабый электролит. Ионное произведение воды.
- •11. PH растворов сильных и слабых кислот и оснований
- •12.Гидролиз солей. Типы гидролизующихся солей. Константа и степень гидролиза.
- •13. Буферные растворы: их состав и применение
- •14. Буферные системы организма
- •Фосфатная буферная система
- •Белковая буферная система
- •Гемоглобиновая буферная система
- •15. Основные понятия химической термодинамики. Типы термодинамических систем.
- •16. Первый и второй законы химической термодинамики. Внутренняя энергия, энтальпия,энтропия.
- •17. Тепловой эффект химической реакции. Закон Гесса. Экзо- и эндотермические процессы.
- •18. Определение скорости химической реакции в гомогенных и гетерогенных системах.
- •19.Зависимость скорости химической реакции от концентраций реагирующих веществ. Закон действия масс.
- •20. Зависимость скорости химической реакции от температуры и природы реагирующих веществ. Правило Вант-Гоффа. Энергия активации.
- •22. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •23) Ядерная модель атома Резерфорда
- •24) Строение атома по н.Бору. Постулаты Бора.
- •25. Квантово-механическая модель атома.
- •26. Типы атомных орбиталей. Характеристика квантовых чисел.
- •27.Заполнение электронами орбиталей в многоэлектронных атомах. Принцип Паули, правило Хунда, правило Клечковского.
- •28. Основные характеристики химической связи: энергия связи, кратность связи, длина связи, полярность связи.
- •Полярность связи
- •29.Метод валентных связей для описания образования химической связи в молекулах. Гибридизация атомных орбиталей.
- •30.Метод молекулярных орбиталей для описания образования химической связи в молекулах.
- •31. Основные характеристики молекул: полярность и поляризуемость молекул.
- •33. Ионная связь. Полярность связи.
- •34. Металлическая связь. Общие свойства веществ с металлической кристаллической решеткой.
- •35. Водородная связь и ее роль в живых системах.
- •36.Виды межмолекулярного взаимодействия:ориентационное, индукционное, дисперсионное.
- •37. Комплексные соединения. Координационная теория Вернера.
- •38. Типы комплексных соединений. Номенклатура комплексных соединений.
- •39. Классификация комплексных соединений
- •40 Устойчивость комплексных соединений. Диссоциация комплексных соединений. Константы нестойкости и устойчивости комплексных соединений.
- •41. Биологическая роль комплексных соединений. Металлоферменты
- •43 Электродные потенциалы и электродвижущие силы
- •44 Водородный электрод. Гальванические элементы.
- •45.Окислительно- восстановительные потенциалы. Направление овр
- •46.Электролиз. Вида электролиза.
- •47.Химические источники электрической энергии. Гальванические элементы и аккамуляторы.
- •48. Коррозия металлов. Виды коррозионного разрушения. Защита от коррозии. Химическая коррозия
- •Примеры коррозии
- •49. Гетерогенное равновесие. Растворимость малорасторимых соединений.
- •50. Произведение растворимости малорастворимых соединений. Условия образования и растворения осадков
- •51. Гетерогенные равновесия «раствор-газ» «раствор-осадок» в организме в норме и паталогии
- •Вопрос 52: Водород. Физико-химические свойства. Вода в природе и как неотъемлемая среда биосистем.
- •Вопрос 53: Физико-химические свойства воды. Основные показатели качества природных вод.
- •54 Вопрос: Изотопы водорода в природе. Тяжёлая вода и её влияние на организм.
- •56. Биологическая роль ионов щелочных металлов и применение их соединений в медицинской практике
- •57. Общая характеристика элементов 2 а группы. Жесткость природных вод.
- •58. Соединения элементов 2 а группы в медицине. Биологическая роль кальция и магния
- •59. Изотопы. Радиоактивные изотопы в медицине. Проблема стронция 90
- •60. Общая характеристика 3 а группы. Бор и аллюминий в медицине
- •61.Общая характеристика 4 а группы. Углерод, его соединения, аллотропные модификации. Круговорот углерода
- •63. Общая характеристика элементов 4 а группы. Физико-химические свойства. Применнение в медицине. Силикагели как адсорбенты.
- •65. Общая характеристика элементов vа группы. Азот соединения азота. Химические превращения соединений азота в атмосфере и биосфере.
- •66. Общая характеристика элементов vа группы. Соединения азота как медицинские препараты. Аммиак, соли аммония, мочевина, мочевая кислота как продукты метаболизма организма.
- •67. Общая характеристика элементов главной подгруппы V группы
- •69.Общая характеристика элементов VI группы
- •Вопрос 73. Общая характеристика элементов 7а группы. Фтор, хлор, бром, йод. Галогены и их соединения в природе.
- •Вопрос 74. Общая характеристика элементов 7а группы. Биологическая роль и применение в медицине галогенов и их соединений.
- •Вопрос 75 Общая характеристика элементов 8а группы. Связь хим свойств со строением их атомов. Возможность образования соединений с другими элементами. Применение в медицинской практике.
- •77. Свойства металлов подгруппы цинка
- •78 Металлы III группы главной подгруппы
- •79.Общая хар-ка элементов 4б группы.Титан, цирконий, гафний.Нахождение в природе.Применение в мед.Практике.
- •80.Общая хар-ка элементов 5б группы. Ванадий, ниобий, тантал..Нахождение в природе.Применение в мед.Практике.
- •81. Общая хар-ка элементов 6б группы. Хром, молибден, вольфрам.Важнейшие соединения. Участие в хим.Процессах организма.
- •Соединения двухвалентного молибдена.
- •Соединения трехвалентного молибдена.
- •Соединения четырехвалентного молибдена.
- •Важнейшие соединения вольфрама. Соединения двухвалентного вольфрама.
- •Соединения четырехвалентного вольфрама.
- •Соединения пятивалентного вольфрама.
- •Соединения шестивалентного вольфрама.
66. Общая характеристика элементов vа группы. Соединения азота как медицинские препараты. Аммиак, соли аммония, мочевина, мочевая кислота как продукты метаболизма организма.
К главной подгруппе V группы периодической системы принадлежат азот, фосфор, мышьяк, сурьма и висмут. Эти элементы, имея пять в наружном слое атома, характеризуются в целом как неметаллы. Однако, способность к присоединению электронов выражена у них значительно слабее, чем у соответствующих элементов VI и VII групп. Благодаря наличию пяти наружных электронов, высшая положительная окисленность элементов этой подгруппы равна +5, а отрицательная -3. Вследствие относительно меньшей электроотрицательности связь рассматриваемых элементов с водородом элементов VI и VII групп. Поэтому водородные соединения этих элементов не отщепляют в водном растворе ионы водорода и, таким образом, не обладают кислотными свойствами. Неметаллические свойства у азота выражены слабее , чем у кислорода и тем более фтора, поэтому ослабление физических и химических свойств при переходе к следующим элементам влечёт за собой появление и нарастание металлических свойств. Последние элементы уже у мышьяка, сурьма приблизительно в равной степени обладает теми и другими свойствами, а висмута металлические свойства преобладают над неметаллическими.
В медицине соединения азота применяют в качестве наркотических (закись азота), мочегонных (хлорид аммония), антиангинальных (нитроглицерин), противоопухолевых (эмбихин), радиозащитных (меркамин) средств.
67. Общая характеристика элементов главной подгруппы V группы
Подгруппу азота составляют пять элементов: азот, фосфор, мышьяк, сурьма и висмут. Это р-элементы V группы периодической системы Д. И. Менделеева.
На наружном энергетическом уровне атомы этих элементов содержат пять электронов, которые имеют конфигурацию ns2np3 и распределены следующим образом:
Поэтому высшая степень окисления этих элементов +5, низшая -3, характерна и +3.
Наличие трех неспаренных электронов на наружном уровне говорит о том, что в невозбужденном состоянии атомы элементов имеют валентность 3. Наружный уровень атома азота состоит только из двух подуровней — 2s и 2р. У атомов же остальных элементов этой подгруппы на наружных энергетических уровнях имеются вакантные ячейки d-подуровня. Следовательно, один из s-электронов наружного уровня может при возбуждении перейти на d-подуровень того же уровня, что приводит к образованию 5 неспаренных электронов.
внешняя электронная оболочка фосфора (невозбужденный атом)
внешняя электронная оболочка возбужденного атома фосфора
Таким образом, фосфор, мышьяк, сурьма и висмут в возбужденном состоянии имеют 5 неспаренных электронов, и валентность их в этом состоянии равна 5.
В атоме азота возбудить электрон подобным образом нельзя вследствие отсутствия d-подуровня на втором уровне. Следовательно, пятивалентным азот быть не может, однако он может образовать четвертую ковалентную связь по донорно-акцепторному механизму за счет неподеленной электронной пары 2s2. Для атома азота возможен и другой процесс. При отрыве одного из двух 2s-электронов азот переходит в однозарядный четырехвалентный ион N+.
От азота к висмуту радиусы атомов увеличиваются, а ионизационные потенциалы уменьшаются. Восстановительные свойства нейтральных атомов усиливаются от N к Bi, а окислительные ослабевают (см. табл. 21).
С водородом азот, фосфор и мышьяк образуют полярные соединения RH3, проявляя отрицательную степень окисления -3. Молекулы RH3 имеют пирамидальную форму. В этих соединениях связи элементов с водородом более прочные, чем в соответствующих соединениях элементов подгруппы кислорода и особенно подгруппы галогенов. Поэтому водородные соединения элементов подгруппы азота в водных растворах не образуют ионов водорода.
С кислородом элементы подгруппы азота образуют оксиды общей формулы R2O3 и R2O5. Оксидам соответствуют кислоты HRO2 и HRO3 (и ортокислоты H3RO4, кроме азота). В пределах подгруппы характер оксидов изменяется так: N2O3 — кислотный оксид; Р4О6 — слабокислотный оксид; As2O3 — амфотерный оксид с преобладанием кислотных свойств; Sb2O3 — амфотерный оксид с преобладанием основных свойств; Bi2O3 — основной оксид. Таким образом, кислотные свойства оксидов состава R2O3 и R2O5 уменьшаются с ростом порядкового номера элемента.
Как видно из табл. 21, внутри подгруппы от азота к висмуту убывают неметаллические свойства и возрастают металлические. У сурьмы эти свойства выражены одинаково, у висмута преобладают металлические, у азота — неметаллические свойства. Фосфор, мышьяк и сурьма образуют несколько аллотропных соединения.
История открытия фосфора
По иронии судьбы фосфор открывался несколько раз. Причем всякий раз получали его из … мочи. Есть упоминания о том, что арабский алхимик Альхильд Бехиль (XII век) открыл фосфор при перегонке мочи в смеси с глиной, известью и углем. Однако датой открытия фосфора считается 1669 год. Гамбургский алхимик-любитель Хеннинг Бранд, разорившийся купец, мечтавший с помощью алхимии поправить свои дела, подвергал обработке самые разнообразные продукты. Предполагая, что физиологические продукты могут содержать «первичную материю», считавшейся основой философского камня, Бранд заинтересовался человеческой мочей.
Он собрал около тонны мочи из солдатских казарм и выпаривал ее до образования сиропообразной жидкости. Эту жидкость он вновь дистиллировал и получил тяжелое красное «уринное масло», которое перегонялось с образованием твердого остатка. Нагревая последний, без доступа воздуха, он заметил образование белого дыма, оседавшего на стенках сосуда и ярко светившего в темноте. Бранд назвал полученное им вещество фосфором, что в переводе с греческого означает «светоносец».
Несколько лет «рецепт приготовления» фосфора хранился в строжайшем секрете и был известен лишь нескольким алхимикам. В третий раз фосфор открыл Р.Бойль в 1680 году.
В несколько модифицированном виде старинный метод получения фосфора использовали и в XVIII столетии: нагреванию подвергали смесь мочи с оксидом свинца (PbO), поваренной солью (NaCl), поташом (K2CO3) и углем (C). Лишь 1777 году К.В.Шееле заработал способ получения фосфора из рога и костей животных.
Природные соединения и получение фосфора
По распространенности в земной коре фосфор опережает азот, серу и хлор. В отличие от азота фосфор, из-за большой химической активности встречается в природе только в виде соединений. Наиболее важные минералы фосфора - апатит Са5Х(РО4)3 (Х - фтор, реже хлор и гидрооксильная группа) и фосфорит основой которого является Са3(РО4)2. Крупнейшее месторождение апатитов находится на Кольском полуострове, в районе Хибинских гор. Залежи фосфоритов находятся в районе гор Каратау, в Московской, Калужской, Брянской областях и в других местах. Фосфор входит в состав некоторых белковых веществ, содержащихся в генеративных органах растений, в нервных и костных тканях организмов животных и человека. Особенно богаты фосфором мозговые клетки.
В наши дни фосфор производят в электрических печах, восстанавливая апатит углем в присутствии кремнезема:
Ca3(PO4)2+3SiO2+5C®3CaSiO3+5CO+P2.
Пары фосфора при этой температуре почти полностью состоят из молекул Р2, которые при охлаждении конденсируются в молекулы Р4.
История открытия фосфора
По иронии судьбы фосфор открывался несколько раз. Причем всякий раз получали его из … мочи. Есть упоминания о том, что арабский алхимик Альхильд Бехиль (XII век) открыл фосфор при перегонке мочи в смеси с глиной, известью и углем. Однако датой открытия фосфора считается 1669 год. Гамбургский алхимик-любитель Хеннинг Бранд, разорившийся купец, мечтавший с помощью алхимии поправить свои дела, подвергал обработке самые разнообразные продукты. Предполагая, что физиологические продукты могут содержать «первичную материю», считавшейся основой философского камня, Бранд заинтересовался человеческой мочей.
Он собрал около тонны мочи из солдатских казарм и выпаривал ее до образования сиропообразной жидкости. Эту жидкость он вновь дистиллировал и получил тяжелое красное «уринное масло», которое перегонялось с образованием твердого остатка. Нагревая последний, без доступа воздуха, он заметил образование белого дыма, оседавшего на стенках сосуда и ярко светившего в темноте. Бранд назвал полученное им вещество фосфором, что в переводе с греческого означает «светоносец».
Несколько лет «рецепт приготовления» фосфора хранился в строжайшем секрете и был известен лишь нескольким алхимикам. В третий раз фосфор открыл Р.Бойль в 1680 году.
В несколько модифицированном виде старинный метод получения фосфора использовали и в XVIII столетии: нагреванию подвергали смесь мочи с оксидом свинца (PbO), поваренной солью (NaCl), поташом (K2CO3) и углем (C). Лишь 1777 году К.В.Шееле заработал способ получения фосфора из рога и костей животных.
Круговорот фосфора в природе
Фосфорное удобрение получается также в качестве побочного продукта при переработке богатого фосфором чугуна в сталь при томасовском процессе. Если «грушу», в которой получается сталь по методу Г.Бессемера, выстлать внутри известковой футеровкой, то известь поглотит фосфор из расплавленного чугуна. В этом и состоит сущность предложенного англичанином С.Дж.Томасом процесса, при котором сразу достигаются две цели: получение доброкачественной стали и ценного удобрения. Последнее достигается путем размалывания поглотившей фосфор известковой футеровки. Получаемый таким путем сухой темно-серый порошок, называемый томасшлаком, содержит от 11 до 24% Р2О5 и является высокоэффективным удобрением, особенно на кислых почвах.
Главнейшие процессы, характеризующие круговорот фосфора в природе, изображены на рисунке. Лучшим объяснением этого рисунка могут служить следующие слова знаменитого русского геолога и минералога, профессора Я.В.Самойлова, которому принадлежит большая заслуга в деле изучения фосфоритов: «Фосфор наших фосфоритовых месторождений – биохимического происхождения. Из апатита – минерала, в котором первоначально заключен почти целиком весь фосфор литосферы, элемент этот переходит в тело растений, из растений – в тело животных, которые являются истинными концентраторами фосфора. Пройдя через ряд животных тел, фосфор, наконец, выпадает из биохимического цикла и вновь возвращается в мир минеральный. При определенных физико-географических условиях в море происходят массовая гибель животных организмов и скопление их тел на дне морском, а скопления эти приводят к образованию фосфоритовых месторождений в осадочных отложениях. Наши фосфориты – биолиты, и если бы можно было шаг за шагом повернуть весь ход испытанных нашими фосфоритами перемещений в обратную сторону, то образцы, заполняющие наши музеи, зашевелились бы...»
Таков круговорот и значение фосфора в природе. Крайне ядовитое и реакционноспособное вещество (в одной из его аллотропных форм – белом или желтом фосфоре) в своих соединениях является существенно необходимым элементом растительной и животной жизни. 68.Роль соединений фосфора в энергобалансе организма. Атф. Скелетная роль соединений фофора. Фосфор в днк. Фосфор как компонент буферной системы крови.
Биологическая роль фосфора сводится к следующему.
1. Необходим для поддержания нормальной структуры костной ткани скелета, зубов.
2. Участвует в внутриклеточных биохимических процессах, обеспечивающих питание клетки и выполнение возложенных на неё функций.
Снижение концентрации фосфора в плазме называется гипофосфатемией.
Причины гипофосфатемии:
а) избыток парат-гормона при гиперпаратиреозе. Парат-гормон, вырабатываемый паращитовидными железами, тормозит реабсорбцию фосфата в проксимальных отделах почечных канальцев;
б) резкое увеличение содержание инсулина в плазме, которое приводит к поступлению фосфата из внеклеточной среды в клетки. Такая ситуация возможна в лечебной практике в стационаре при лечении гипергликемической комы;
в) в лечебной практике при нерациональном длительном парентеральном питании ( в\в питании, когда самостоятельный приём пищи невозможен) возможно развитие гипофосфатемии при лечении инсулином и глюкозой без соответствующего добавления фосфатов. В этом случае происходит истинное истощение фосфатного резерва. В современной медицине данная ситуация корригируется использованием в составе искусственного парентерального питания специальных сбалансированных смесей;
Повышение содержания фосфора в плазме называется гиперфосфатемией.
Причины гиперфосфатемии:
а) недостаточность функции клубочков почки при образовании первичной мочи;
б) гипопаратиреоз;
в) акромегалия (при этом заболевании также присутствует гипопаратиреоз);
Избыток в крови фосфатов приводит к связыванию ионизированного кальция и переводу его в нерастворимую химически неактивную форму с развитием симптомов гипокальциемии.
Потребность организма в фосфоре удовлетворяется полностью за счёт поступления его с пищей. Около 65% поступившего в организм фосфора всасывается в тонком кишечнике, на процесс всасывания оказывает влияние дериваты витамина D. Витамин D и парат-гормон участвуют в процессах реабсорбции фосфатов в канальцевом аппарате почек.
Служит предшественником в синтезе ДНК и РНК. Эти носители генетической информации были впервые выделены в 1869 Мишером и названы им нуклеином. Мишер установил содержание значительного количества фосфора в нуклеине. ДНК и РНК представляют собой двухцепочечные спирализованные полимерные молекулы. Остов их образован остатками пентоз (дезоксирибозы для ДНК и рибозы для РНК) и фосфата. Важность фосфора в сохранении целостности РНК и ДНК была подтверждена на опытах с фагами (вирусами, заражающими клетки бактерий), меченными радиофосфором. Их назвали фагами-самоубийцами, так как по мере распада радиоактивного фосфора, структура нуклеиновой кислоты повреждалась настолько, что это становилось летальным для вируса.
Фосфат является компонентом буферной системы крови, других биологических жидкостей, обеспечивает поддержание кислотно-щелочного равновесия, обеспечивает регуляцию обменных процессов (через цАМФ), проведение нервного импульса и мышечного сокращения. Неорганический фосфор выполняет структурные функции: входит в состав костной ткани, мембранных структур клетки, эмали и дентина зубов.
Фосфор в организме человека
В теле человека массой 70 кг. Содержится около 780 г. фосфора. В виде фосфатов кальция фосфор присутствует в костях человека и животных. Входит он и в состав белков, фосфолипидов, нуклеиновых кислот; соединения фосфора участвуют в энергетическом обмене (аденизинтрифосфорная кислота, АТФ). Ежедневная потребность человеческого организма в фосфоре составляет 1,2 г. Основное его количество мы потребляем с молоком и хлебом (в 100 г. хлеба содержится примерно 200 мг. фосфора). Наиболее богаты фосфором рыба, фасоль и некоторые виды сыра.
Интересно, что для правильного питания необходимо соблюдать баланс между количеством потребляемого фосфора и кальцием: оптимальное соотношение в этих элементах пищи составляет 1,5¸1. Избыток богатой фосфором пищи приводит к вымыванию кальция из костей, а при избытке кальция развивается мочекаменная болезнь.