- •1. Химия, как одна из наук о природе. Предмет и задачи химии.
- •2. Основные законы стехиометрии.
- •3. Понятие о растворах. Виды растворов.
- •4. Растворение. Растворимость. Гидратная теория д.И. Менделеева.
- •5.Способы выражения состава растворов.
- •6. Свойства растворов неэлектролитов. Законы Генри, Рауля, Вант-Гоффа.
- •9. Константа и степень электролитической диссоциации. Активность и ионная сила.
- •10.Вода как слабый электролит. Ионное произведение воды.
- •11. PH растворов сильных и слабых кислот и оснований
- •12.Гидролиз солей. Типы гидролизующихся солей. Константа и степень гидролиза.
- •13. Буферные растворы: их состав и применение
- •14. Буферные системы организма
- •Фосфатная буферная система
- •Белковая буферная система
- •Гемоглобиновая буферная система
- •15. Основные понятия химической термодинамики. Типы термодинамических систем.
- •16. Первый и второй законы химической термодинамики. Внутренняя энергия, энтальпия,энтропия.
- •17. Тепловой эффект химической реакции. Закон Гесса. Экзо- и эндотермические процессы.
- •18. Определение скорости химической реакции в гомогенных и гетерогенных системах.
- •19.Зависимость скорости химической реакции от концентраций реагирующих веществ. Закон действия масс.
- •20. Зависимость скорости химической реакции от температуры и природы реагирующих веществ. Правило Вант-Гоффа. Энергия активации.
- •22. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье.
- •23) Ядерная модель атома Резерфорда
- •24) Строение атома по н.Бору. Постулаты Бора.
- •25. Квантово-механическая модель атома.
- •26. Типы атомных орбиталей. Характеристика квантовых чисел.
- •27.Заполнение электронами орбиталей в многоэлектронных атомах. Принцип Паули, правило Хунда, правило Клечковского.
- •28. Основные характеристики химической связи: энергия связи, кратность связи, длина связи, полярность связи.
- •Полярность связи
- •29.Метод валентных связей для описания образования химической связи в молекулах. Гибридизация атомных орбиталей.
- •30.Метод молекулярных орбиталей для описания образования химической связи в молекулах.
- •31. Основные характеристики молекул: полярность и поляризуемость молекул.
- •33. Ионная связь. Полярность связи.
- •34. Металлическая связь. Общие свойства веществ с металлической кристаллической решеткой.
- •35. Водородная связь и ее роль в живых системах.
- •36.Виды межмолекулярного взаимодействия:ориентационное, индукционное, дисперсионное.
- •37. Комплексные соединения. Координационная теория Вернера.
- •38. Типы комплексных соединений. Номенклатура комплексных соединений.
- •39. Классификация комплексных соединений
- •40 Устойчивость комплексных соединений. Диссоциация комплексных соединений. Константы нестойкости и устойчивости комплексных соединений.
- •41. Биологическая роль комплексных соединений. Металлоферменты
- •43 Электродные потенциалы и электродвижущие силы
- •44 Водородный электрод. Гальванические элементы.
- •45.Окислительно- восстановительные потенциалы. Направление овр
- •46.Электролиз. Вида электролиза.
- •47.Химические источники электрической энергии. Гальванические элементы и аккамуляторы.
- •48. Коррозия металлов. Виды коррозионного разрушения. Защита от коррозии. Химическая коррозия
- •Примеры коррозии
- •49. Гетерогенное равновесие. Растворимость малорасторимых соединений.
- •50. Произведение растворимости малорастворимых соединений. Условия образования и растворения осадков
- •51. Гетерогенные равновесия «раствор-газ» «раствор-осадок» в организме в норме и паталогии
- •Вопрос 52: Водород. Физико-химические свойства. Вода в природе и как неотъемлемая среда биосистем.
- •Вопрос 53: Физико-химические свойства воды. Основные показатели качества природных вод.
- •54 Вопрос: Изотопы водорода в природе. Тяжёлая вода и её влияние на организм.
- •56. Биологическая роль ионов щелочных металлов и применение их соединений в медицинской практике
- •57. Общая характеристика элементов 2 а группы. Жесткость природных вод.
- •58. Соединения элементов 2 а группы в медицине. Биологическая роль кальция и магния
- •59. Изотопы. Радиоактивные изотопы в медицине. Проблема стронция 90
- •60. Общая характеристика 3 а группы. Бор и аллюминий в медицине
- •61.Общая характеристика 4 а группы. Углерод, его соединения, аллотропные модификации. Круговорот углерода
- •63. Общая характеристика элементов 4 а группы. Физико-химические свойства. Применнение в медицине. Силикагели как адсорбенты.
- •65. Общая характеристика элементов vа группы. Азот соединения азота. Химические превращения соединений азота в атмосфере и биосфере.
- •66. Общая характеристика элементов vа группы. Соединения азота как медицинские препараты. Аммиак, соли аммония, мочевина, мочевая кислота как продукты метаболизма организма.
- •67. Общая характеристика элементов главной подгруппы V группы
- •69.Общая характеристика элементов VI группы
- •Вопрос 73. Общая характеристика элементов 7а группы. Фтор, хлор, бром, йод. Галогены и их соединения в природе.
- •Вопрос 74. Общая характеристика элементов 7а группы. Биологическая роль и применение в медицине галогенов и их соединений.
- •Вопрос 75 Общая характеристика элементов 8а группы. Связь хим свойств со строением их атомов. Возможность образования соединений с другими элементами. Применение в медицинской практике.
- •77. Свойства металлов подгруппы цинка
- •78 Металлы III группы главной подгруппы
- •79.Общая хар-ка элементов 4б группы.Титан, цирконий, гафний.Нахождение в природе.Применение в мед.Практике.
- •80.Общая хар-ка элементов 5б группы. Ванадий, ниобий, тантал..Нахождение в природе.Применение в мед.Практике.
- •81. Общая хар-ка элементов 6б группы. Хром, молибден, вольфрам.Важнейшие соединения. Участие в хим.Процессах организма.
- •Соединения двухвалентного молибдена.
- •Соединения трехвалентного молибдена.
- •Соединения четырехвалентного молибдена.
- •Важнейшие соединения вольфрама. Соединения двухвалентного вольфрама.
- •Соединения четырехвалентного вольфрама.
- •Соединения пятивалентного вольфрама.
- •Соединения шестивалентного вольфрама.
56. Биологическая роль ионов щелочных металлов и применение их соединений в медицинской практике
По содержанию в организме человека натрий (0,08%) и калий (0,23%) относятся к макроэлементам, остальные – литий (10 -4%), рубидий (10-5 %) и цезий (10-4%) – микроэлементам. Щелочные металлы в виде различных соединений входят в состав тканей животных и человека. Натрий и калий – жизненно необходимые элементы, постоянно содержатся в организме, участвуют в обмене веществ. Литий, рубидий, цезий – также постоянно содержатся в организме, однако физиологическая и биохимическая роль их мало выяснена. Их можно отнести к примесным микроэлементам. В организме человека щелочные металлы находятся в виде катиона Э+. Натрий и литий накапливаются во внеклеточной жидкости; калий рубидий и цезий – во внутриклеточной. Близость натрия и лития обусловливает их взаимозамещаемость в организме. В связи с этим при избыточном введении ионов натрия и лития в организм, они способны эквивалентно замещать друг друга. На этом основано введение хлорида натрия при отравлении солями лития. Рубидий, цезий близки к калию, поэтому в живых организмах ведут себя сходным образом. При отравлении солями рубидия в организм вводят соли калия. Натрий и калий – антагонисты. Антагонизм (хим.) – явление уменьшения или снижения активности какого-либо вещества в присутствии другого. При увеличении количества натрия в организме усиливается выведение калия почками, т.е. наступает гипокалиемия. Литий - микроэлемент, содержание в организме человека около 70 мг. Соединения лития у высших животных концентрируется в печени, почках, селезенке, легких, крови, молоке Максимальное количество лития найдено в мышцах человека. Биологическая роль лития как микроэлемента пока до конца не выяснена. Натрий – из общего содержания в организме человека 44% натрия находится во внеклекточной жидкости, 9% - внутриклеточной. Остальное количество натрия находится в костной ткани, являющейся местом депонирования иона натрия в организме. Около 40% натрия, содержащегося в костной Тани, участвует в обменных процессах и благодаря этому скелет является либо донором, либо акцептором ионов натрия, что способствует поддержанию постоянства концентрации ионов натрия во внеклеточной жидкости. Натрий – основной внеклеточный ион. В организме человека находится натрий в виде его растворимых солей, главным образом: хлорид натрия – NaCl, ортофосфат натрия – Na3PO4, гидрокарбонат натрия – NaHCO3. Натрий распределен по всему организму: в сыворотке крови, спинномозговой жидкости, пищеварительных соках, желчи, почках, коже, костной ткани, легких, мозге Калий. Является основным внутриклеточным катионом. Из общего количества калия, содержащегося в организме, 98% находится внутри клеток и лишь около 2% - во внеклеточной жидкости. Калий распространен по всему организму. Его топография: печень, почки, сердце, костная ткань, мышцы, кровь, мозг и т.д.
57. Общая характеристика элементов 2 а группы. Жесткость природных вод.
Ко II группе периодической системы элементов относятся бериллий, щелочноземельные металлы: магний, кальций, стронций, барий и радий (главная подгруппа) и подгруппа цинка: цинк, кадмий, ртуть (побочная подгруппа). Своим названием щелочноземельные металлы обязаны тому, что их оксиды (земли) при растворении в воде образуют щелочные растворы.
На внешнем электронном уровне элементов главной и побочной подгрупп находятся по 2 электрона (s2), которые они отдают, образуя соединения со степенью окисления +2.
Для всех элементов II группы характерны сравнительно низкая температура плавления и высокая летучесть. У щелочноземельных элементов растворимость гидроксидов увеличивается от магния к барию: гидроксид магния почти не растворяется в воде, гидроксид кальция растворяется слабо, а гидроксид бария - хорошо.
Растворимость многих солей уменьшается от магния к радию. Так сульфат магния хорошо растворяется в воде, сульфат кальция - плохо, а сульфаты стронция, бария и радия практически нерастворимы. Низкая растворимость сульфата радия используется для выделения радия из его концентратов.В подгруппе цинка амфотерность оксидов уменьшается от цинка к ртути: гидроксид цинка хорошо растворяется в щелочах, гидроксид кадмия - значительно хуже, а гидроксид ртути в щелочах нерастворим. Активность элементов в этой подгруппе уменьшается с увеличением их атомной массы. Так цинк вытесняет кадмий и ртуть из растворов их солей, а кадмий вытесняет ртуть. Бериллий был открыт Л. Н. Вокленом в 1798 г. Содержание его в земной коре составляет 3,8 * 10-4 %. Металлический бериллий применяется для изготовления окон к рентгеновским установкам, так как поглощает рентгеновские лучи в 17 раз слабее алюминия. Добавка бериллия к сплавам увеличивает их твердость и электропроводность. Соединения бериллия могут вызывать очень тяжелое заболевание легких.
Барий был открыт К. В. Шееле в 1774 г. и Г. Деви в 1808 г. Содержание его в земной коре составляет 0,065 %. Из соединений бария наиболее широко применяются его гидроксид, пероксид и некоторые соли. Гидроксид и хлорид бария используются в лабораторной практике, пероксид бария - для получения пероксида водорода, нитрат и хлорат - в пиротехнике, сульфат бария - в рентгеноскопии органов пищеварения. Соединения бария ядовиты.
Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив ?-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив ?-Ca с кубической объемно-центрированной решеткой типа ?-Fe (параметр a = 0,448 нм). Стандартная энтальпия перехода ? > ? составляет 0,93 кДж/моль.
При постепенном повышении давления начинает проявлять свойства полупроводника, но не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются)[4].
Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C — 1,737 г/см?, температура плавления металла tпл = 651 °C, температура кипения tкип = 1103 °C, теплопроводность при 20 °C — 156 Вт/(м·К).
Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием
Жёсткость воды — совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).
Жёсткость природных вод может варьироваться в довольно широких пределах и в течение года непостоянна. Увеличивается жёсткость из-за испарения воды, уменьшается в сезон дождей, а также в период таяния снега и льда.
