- •Электротехника с основами электроники Опорный конспект лекций для учащихся машиностроительного отделения по специальности
- •Введение
- •Глава 1
- •§ 1.1. Электрическое поле и его характеристика.
- •§ 1.2. Потенциал, электрическое напряжение.
- •§ 1.3. Конденсаторы. Соединение конденсаторов.
- •Контрольные вопросы:
- •Глава 2
- •§ 2.1. Электропроводность.
- •§ 2.2. Электрическая цепь и ее элементы.
- •§ 2.3. Сопротивление, проводимость.
- •§ 2.4. Закон Ома.
- •§ 2.5. Работа и мощность электрического тока.
- •§ 2.6. Допустимая нагрузка провода.
- •§ 2.7. Соединение сопротивлений.
- •§ 2.8. Потери напряжения в проводах.
- •§ 2.9. Два режима работы источника питания.
- •§ 2.10. Расчет сложной электрической цепи.
- •Контрольные вопросы:
- •Глава 3
- •§ 3.1. Преобразование механической энергии в электрическую.
- •§ 3.2. Преобразование электрической энергии в механическую.
- •§ 3.3. Характеристики магнитного поля.
- •§ 3.4. Проводник с током в магнитном поле.
- •§ 3.5. Закон электромагнитной индукции.
- •§ 3.6. Вихревые токи.
- •Контрольные вопросы:
- •Глава 4
- •§ 4.1. Переменный ток, получение, параметры.
- •§ 4.2. Фаза переменного тока. Сдвиг фаз.
- •§ 4.3. Векторные диаграммы.
- •§ 4.4. Особенности электрических цепей переменного тока.
- •§ 4.5. Цепь переменного тока с активным сопротивлением.
- •§ 4.6. Цепь переменного тока с емкостью.
- •§ 4.7. Цепь переменного тока с индуктивностью.
- •§ 4.8. Неразветвленная цепь переменного тока с r, xl, xc.
- •§ 4.9. Разветвленная цепь переменного тока.
- •§ 4.10. Коэффициент мощности.
- •Контрольные вопросы:
- •Глава 5
- •§ 5.1. Общие сведения.
- •§ 5.2. Принцип получения трехфазной эдс. Основные схемы соединений трехфазных цепей.
- •§ 5.3. Соединение обмоток генератора и потребителя звездой.
- •§ 5.4. Соединение обмоток генератора и потребителя треугольником.
- •§ 5.5. Мощность трехфазной цепи.
- •Контрольные вопросы:
- •Глава 6
- •§ 6.1. Назначение, классификация, определение. Виды погрешностей, класс точности.
- •§ 6.2. Измерительные механизмы приборов.
- •§ 6.3. Измерение тока и напряжения в электрических цепях.
- •§ 6.4. Измерение мощности в трехфазной цепи.
- •§ 6.5. Измерение сопротивлений.
- •Контрольные вопросы:
- •Глава 7
- •§ 7.1. Устройство однофазного трансформатора.
- •§ 7.2. Принцип действия однофазного трансформатора.
- •§ 7.3. Режимы работы трансформатора.
- •§ 7.4. Трехфазные трансформаторы.
- •§ 7.5. Трансформаторы для дуговой электросварки (сварочный трансформатор).
- •Контрольные вопросы:
- •Глава 8
- •§ 8.1. Назначение машин постоянного тока
- •§ 8.2. Устройство машины постоянного тока.
- •§ 8.3. Принцип работы машины постоянного тока.
- •§ 8.4. Генераторы.
- •§ 8.5. Двигатели постоянного тока.
- •§ 8.6. Потери и коэффициент полезного действия.
- •Контрольные вопросы:
- •Глава 9
- •§ 9.1. Устройство асинхронного двигателя.
- •§ 9.2. Принцип действия асинхронного двигателя.
- •§ 9.3. Пуск в ход.
- •§ 9.4. Регулирование частоты вращения.
- •§ 9.5. Реверс.
- •§ 9.6. Вращающий момент двигателя.
- •§ 9.7. Синхронные машины
- •§ 9.8. Однофазный асинхронный двигатель.
- •§ 9.9. Кпд и коэффициент мощности асинхронного двигателя.
- •Контрольные вопросы:
- •Литература:
§ 3.2. Преобразование электрической энергии в механическую.
К проводнику длиной l,
помещенному в магнитное поле, приложено
напряжение источника U и
в цепи существует ток I.
На проводник действует электромагнитная
сила
,
напряжение которой определяется по
правилу левой руки. Под действием этой
силы, если она больше силы сопротивления
груза G, начнется движение
проводника длиной l и груз
станет подниматься. Следовательно,
электрическая энергия источника в
данном случае преобразуется в механическую
энергию груза. Найдем количественное
соотношение, характеризующее это
преобразование. При движении проводника
в магнитном поле в нем будет индуктироваться
ЭДС
.
Рис.3-3.
Направление индуктируемой ЭДС найдем по правилу правой руки противоположно току, протекающему в проводнике, т.е. противоположно напряжению, приложенному к проводнику. Тогда, по второму закону Кирхгофа для этой цепи следует:
,
где R0 – сопротивление проводника.
Отсюда, ток в цепи
.
Умножим уравнение
на ток I, имея в виду, что
,
получим
,
т.е.
,
где
- электрическая мощность;
- механическая мощность;
- тепловая мощность.
Таким образом, преобразование электрической энергии в механическую связано:
с появлением механической энергии (в данном случае проводник поднимает груз);
с возникновением противо ЭДС.
Т.к. ЭДС направлена навстречу действия источника питания, она называется противо ЭДС.
Принцип работы электродвигателя.
Если по проводу длиной 1, расположенному в однородном поле перпендикулярно магнитным линиям, проходит ток I от источника С напряжением U, то на него действует электромагнитная сила
F=BlI,
направление, которой определяется по правилу левой руки.
Под действием этой силы провод будет двигаться со скоростью υ, совершая механическую работу, и в нем будет индуктироваться э. д. с., направление которой, найденное по правилу правой руки, противоположно току. Величина встречной э. д. с.
.
Если сопротивление провода r0, то по второму закону Кирхгофа можно написать:
или
,
откуда ток в цени
.
Умножив уравнение на ток, найдем электрическую мощность
.
Произведение I2r— это мощность тепловых потерь в проводе, а Fυ — механическая мощность.
Рис.3-4. Принцип работы электродвигателя.
Таким образом, полученная проводом электрическая энергия при движении его в магнитном поле преобразуется в механическую, а процесс преобразования энергии связан с наведением противо-э. д. с. Проводник, движущийся магнитном поле, можно рассматривать как простейший электродвигатель
§ 3.3. Характеристики магнитного поля.
Магнитное поле – одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и ее скорости.
Магнитное поле изображается силовыми линиями, касательные к которым совпадают с ориентацией магнитных стрелок, внесенных в поле. Таким образом, магнитные стрелки как бы являются пробными элементами для магнитного поля.
За положительное направление магнитного поля условно принимают направление северного полюса магнитной стрелки.
Вокруг проводника, в котором существует ток, всегда имеется магнитное поле, и, наоборот, в замкнутом проводнике, движущемся в магнитном поле, возникает ток.
Магнитная индукция В – векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля. Эта характеристика является основной характеристикой магнитного поля, т.к. определяет электромагнитную силу, а также ЭДС индукции в проводнике, перемещающемся в магнитном поле.
Единицей магнитной индукции является вебер, деленный на квадратный метр, или тесла (Тл):
[В]=1Вб/1м2=1Тл.
Абсолютная магнитная проницаемость среды μа – величина, являющаяся коэффициентом, отражающим магнитные свойства среды:
,
где μ0=4π*107 (Ом*с)/м – магнитная постоянная, характеризующая магнитные свойства вакуума.
Единицу Ом-секунда (Ом*с) называют генри (Гн).
Таким образом,
[μ]=Гн/м.
Величину μr называют относительной магнитной проницаемость. среды. Она показывает во сколько раз индукция поля, созданного током в данной среде, больше или меньше, чем в вакууме, и является безразмерной величиной.
Напряженность магнитного поля Н – векторная величина, которая не зависит от свойств среды и определяется только токами в проводниках, создающими магнитное поле.
Направление вектора Н (рис.3-5) для изотропных сред совпадает с вектором В и определяется касательной, проведенной в данной точке поля (точка А) и соловой линии. Напряженность связана с магнитной индукцией соотношением
.
Единица напряженности магнитного поля – ампер на метр
[H]=1А/1м.
Рис.3-5.
Магнитный поток Ф – поток магнитной индукции. На рис.3-6 показано однородное магнитное поле, пересекающее площадку S. Магнитный поток Ф через площадку S в однородном магнитном поле равен произведению нормальной составляющей вектора индукции Вn на площадь S площадки:
.
Рис.3-6.
