
- •1.Скорость. Угловая скорость. Ускорение. Масса. Законы Ньютона.
- •2.Закон всемирного тяготения. Первая космическая скорость. Упругие силы. Закон Гука.
- •3.Работа. Мощность. Кинетическая энергия. Потенциальная энергия. Закон сохранения полной механической энергии.
- •4.Закон сохранения количества движения. Реактивное движение.
- •6. Сила Кориолиса. Доказательства вращения Земли.
- •5.Неинерциальные системы отсчета. Силы инерции. Центробежная сила.
- •7. Закон сохранения момента импульса и секториальная скорость.
- •8. Основное уравнение динамики вращательного движения. Момент инерции. Теорема Штейнера.
- •9.Уравнение Бернулли.
- •10. Молекулярно-кинетическая теория. Давление. Основное уравнение мкт.
- •11.Атмосферное давление и его измерение. Барометрическая формула.
- •23.Теплопроводность. Закон Фурье. Коэффициент теплопроводности.
- •12.Температура и её измерение. Температурные шкалы Цельсия и Кельвина. Идеальный газ. Уравнение Менделеева-Клапейрона.
- •13.Работа в термодинамике. Внутренняя энергия и число степеней свободы молекул. Количество теплоты. Теплоемкость.
- •14.Первое начало термодинамики.
- •15.Второе начало термодинамики. Энтропия.
- •30.Сила Лоренца. Правило левой руки. Движение заряженных частиц в магнитном поле Земли.
- •16.Закон возрастания энтропии. Статистический смысл энтропии.
- •17.Классическа теория теплоемкости идеального газа.
- •18.Адиабатический процесс. Уравнение Пуассона.
- •19.Распределение Больцмана и атмосфера Земли и других планет.
- •20.Тепловые машины и проблемы экологии.
- •25.Поверхностное натяжение и его роль в жизни. Коэффициент поверхностного натяжения. Капиллярные явления.
- •21. Цикл Карно. Коэффициент полезного действия тепловых машин.
- •22.Внутреннее трение. Формула Ньютона. Коэффициент внутреннего трения.
- •24.Диффузия в различных средах. Закон Фика. Коэффициент диффузии.
- •26.Фаза.Фазовые превращения первого рода. Изменения агрегатного состояния вещества. Уравнение Клапейрона-Клаузиуса.
- •28.Сила тока. Напряжение. Закон Ома в дифференциальной и интегральной формах. Электродвижущая сила источника тока. Закон Джоуля-Ленца.
- •35.Работа и мощность переменного тока. Действующее значение напряжения.
- •27.Электрическое поле. Напряженность и потенциал электрического поля. Электрическое поле Земли. Электрическое поле в проводниках и диэлектриках. Теорема Гаусса в вакууме.
- •29.Вектор индукции магнитного поля. Закон Био и Савара. Магнитное поле Земли. Динамо-эффект.
- •30.Сила Лоренца. Правило левой руки. Движение заряженных частиц в магнитном поле Земли.
- •31.Электрический ток в воздухе. Электрический ток в воде.
- •32.Электрический ток в полупроводниках. Примесная проводимость. Полупроводниковый диод.
- •41.Теорема Гаусса для диэлектриков.
- •42. Теорема о магнитной циркуляции
- •33.Явление электромагнитной индукции. Индуктивность. Получение и передача переменного тока.
- •36.Трансформатор. Токи Фуко.
- •37.Колебательный контур. Резонанс. Принципы радиосвязи.
- •38.Шлака электромагнитных волн. Свет.
- •39. Развитие взглядов на природу света. Дуализм волна-частица.
- •40.Уравнения Максвелла. Электромагнитные волны.
29.Вектор индукции магнитного поля. Закон Био и Савара. Магнитное поле Земли. Динамо-эффект.
Магниты были известны и использовались человеком очень давно, однако систематическое изучение магнетизма началось в ХIХ веке после установления магнитного действия постоянного тока. Закон, определяющий силу, действующую на движущийся со скоростью v точечный заряд q в магнитном полем, получен Лоренцем обобщением опытных фактов F = q[v*В], где вектор В характеризует магнитное поле и называется вектором индукции магнитного поля.
Магнитное поле линейного элемента тока определяется по закону Био и Савара: dB=μ0I[dlr]/(4πr3). Для очень длинного прямолинейного проводника с током I вычисление интеграла даёт для модуля магнитного поля на расстоянии R от провода В=μ0I/(2πR).
Магнитное поле Земли или геомагнитное поле - магнитное поле, генерируемое внутриземными источниками. Предмет изучения геомагнетизма.
На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли. По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».
Гидромагнитное (или магнитогидродинамическое, или просто МГД-) динамо (динамо-эффект) - эффект самогенерации магнитного поля при определённом движении проводящей жидкости.
30.Сила Лоренца. Правило левой руки. Движение заряженных частиц в магнитном поле Земли.
Сила Лоренца - сила, с которой электромагнитное поле действует на точечную заряженную частицу. Fл=q[v*В], где вектор В характеризует магнитное поле и называется вектором индукции магнитного поля.
Правило левой руки - если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещенный в магнитное поле.
Земля заряжена отрицательно её электрический заряд испытывает периодические изменения и в среднем составляет 6*105 Кл. Воздух обладает проводимостью, поэтому в атмосфере текут токи, уменьшающие заряд Земли. В настоящее время можно считать установленным, что заряд Земли поддерживается грозовой активностью атмосферы.
31.Электрический ток в воздухе. Электрический ток в воде.
Электрический ток в газах. Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой. Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны.
Электрический ток в жидкостях обусловлен движением положительных и отрицательных ионов. В отличие от тока в проводниках где движутся электроны. Таким образом, если в жидкости нет ионов, то она является диэлектриком, например дистиллированная вода. Поскольку носителями заряда являются ионы, то есть молекулы и атомы вещества, то при прохождении через такую жидкость электрического тока неизбежно приведет к изменению химических свойств вещества.