
- •1. Силы в механике. Законы Ньютона.
- •2. Момент инерции тела. Момент импульса тела.
- •3.Законы сохранения в физике. Сохранение импульса, момент импульса. Энергия в механике.
- •4.Работа. Мощность. Энергия
- •5.Понятие о колебательных процессах. Амплитуда, круговая частота, фаза гармонических колебаний.
- •6.Сложение гармонических колебаний. Энергия гармонических колебаний.
- •7.Вынужденные колебания. Резонанс в механических системах.
- •8.Колебания в среде. Энергия, переносимая упругой волной.
- •9.Уравнение волны. Звуковые волны. Стоячие волны.
- •10.Давление идеального газа с точки зрения молекулярно-кинетической теории.
- •11.Молекулярно-кинетический смысл температуры.
- •12.Явление переноса в идеальном газе. Вязкость.
- •13.Первое и второе начала термодинамики.
- •14.Цикл Карно. Максимальный кпд тепловой машины.
- •15.Понятие электрического заряда. Взаимодействие зарядов. Закон Кулона.
- •16.Элестрическое поле, его напряженность.
- •17.Работа электрического поля.
- •18.Понятие потенциала электрического поля. Связь потенциала с напряженностью электростатического поля.
- •19.Свойства проводников в электростатическом поле.
- •20.Свойства диэлектриков в электростатическом поле.
- •21.Условия существования электрического тока. Законы Ома, Кирхгофа, Джоуля-Ленца.
- •22.Сопротивление проводников. Причины его изменения.
- •23.Электрический ток в жидкостях. Методы повышения проводимости жидкости.
- •24.Электрический ток в газах при различных напряженностях электрического поля.
- •25.Электрический ток в вакууме. Методы регулирования.
- •27. Понятие полупроводников и механизмов их проводимости.
- •28.Дырочно-электронный переход в полупроводниках.
- •29. Понятие магнитного поля. Сила Лоренца и сила Ампера.
- •30.Движение заряженной частицы в электрическом и магнитном полях.
- •31. Закон Био-Савара-Лапласа для расчета магнитных полей токов.
- •33.Взаимная индукция соленоидов. Работа трансформатора.
- •34. Причины существования ферромагнетиков, парамагнетиков, диамагнетиков.
- •35. Формирование электромагнитных колебаний в колебательном контуре.
- •36.Понятие электромагнитных волн, волновое уравнение для световой волны.
- •37.Связь параметров электрических и магнитных процессов в теории Максвелла.
- •38.Законы отражения и преломления света.
- •39.Понятия геометрической оптики. Тонкие линзы. Их фокусное расстояние. Оптическая сила.
- •40.Условия полного отражения света. Световоды.
- •41.Электромагнитная природа света. Монохроматизм и когерентность.
- •42.Оптическая разность хода. Интерференция световых волн.
- •43.Интерференция света в тонких плёнках.
- •44.Дифракция волн и принцип Гюйгенса-Френеля.
- •45.Дифракция света на одной щели. Дефракционная решетка.
- •46.Понятие формирования голографического изображения.
- •47.Поляризация света. Способы его поляризации.
- •50.Поглощение света, квантовомеханические причины.
- •52.Фотоэлектрический эффект. Давление света.
- •53.Постулаты Бора. Построение атома водорода.
5.Понятие о колебательных процессах. Амплитуда, круговая частота, фаза гармонических колебаний.
кодебания-это процессы, отличающиеся той или иной степенью повторяемости. (механические, электромагнитные, электромеханические). На колеб. Процессах основана радиотехника. Колебания: свободные, вынужденные, автоколебания(часы). Фаза колеб – величина (w0t+L),стоящая под знаком cos. ( х=a cos (w0t+L).
Амплитуда - модуль максимального отклонения тела от положения равновесия. Период колебаний — время (в секундах) между двумя последовательными прохождениями тела через одно и то же положение в одном и том же направлении, величина, обратная частоте. (T=2пи/ w0).Круговая частота: w0=2пиv
6.Сложение гармонических колебаний. Энергия гармонических колебаний.
гарм. Колеб.- колеб, кот описываются функциями син и кос.В процессе колеб происходит превращение кин энергии в потенциальную и обратно, причём в моменты наибольшего отклонения от положения равновесия полная энергия состоит только из пот энергии, которая достигает своего наиб значения. При прохождении системы через полож равновесия полная энергия состоит лишь из кинетической, кот достигает наиб знач. Полная энергия гарм колеб остаётся постоянной.
7.Вынужденные колебания. Резонанс в механических системах.
вынужд колеб – колеб, вызванные действием внешней силы. Амплитуда вын колеб пропорциональна амплитуде вынуждающей силы.
Резонанс –явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. В основе работы механических резонаторов лежит преобразование кинетической энергии в потенциальную и обратно. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.
8.Колебания в среде. Энергия, переносимая упругой волной.
Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной. Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне. Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной. Волны в упругом стержне или звуковые волны в газе являются примерами таких волн. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит.