
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
3.2.3 Регулирование временных напряжений
Структуру и свойства сварных соединений из среднелегированных сталей, в частности их стойкость против образования холодных трещин, можно в определенных пределах изменить, регулируя нарастание в них - при охлаждений временных сварочных напряжений. Если при охлаждений, соединения эти напряжения достигают определенной величины при температурах, предшествующих развитию бейнитного и мартенситного превращения, то эти превращения смещаются в область высоких температур. В результате стойкость сварных соединений против образования холодных трещин повышается. Степень влияния зависит от величины временных напряжений, температуры их приложения, а также от состава стали. Существуют для каждой стали оптимальные значения температур и напряжений, при которых их влияние на превращение аустенита наибольшее(см. рис.3). Этот метод борьбы с холодными трещинами особенно эффективен при сварке среднелегированных сталей с пониженным содержанием углерода и легирующих элементов и при применении режимов сварки, обеспечивающих замедленное охлаждение сварных соединений.
В качестве примера можно привести технологию сварки стали типа 35Х3Н3М при трех типах металла шва: аустенитном, бейнитно-мартенситном и ферритно-перлитном. Швы сваривали под флюсом с использованием огарочных проволок Св 08Х20Н9Г7Т, Св 10Х5М и Св О8ГА соответственно. Как показали эксперименты, только в соединениях с аустенитным и бейнитно-мартенситным швами поперечные напряжения перед бейнитно-мартенситным превращением в околошовной зоне при температуре 400-450°С достигают величины (12 кгс/мм2), достаточной для смещения превращения и повышения их стойкости против образования трещин. В соединениях с ферритно-перлитным швом величины этих напряжений недостаточны ( 6 кгс/мм2 при 450°) для такого смещения.
Второй способ регулирования временных напряжений заключается в установлении рациональной последовательности выполнения отдельных швов в сварной конструкции (узле), когда первые сваренные швы увеличивают жесткость конструкции и тем самим создают напряженное состояние при сварке других швов. Следует отметить, что при чрезмерной жесткости конструкции склонность к образованию трещин может не уменьшиться, а наоборот - увеличиться.
Третий способ регулирования временных напряжений в сварных соединениях состоит в преднамеренном их деформировании внешней силой в оптимальном интервале температур при помощи специальных приспособлений. Однако большие размеры и сложность этих приспособлений ограничивают практическое применение способа деталями и узлами с относительно небольшим сечением.
3.2.4. Применение сварочных проволок с пониженной температурой плавления.
При сварке плавлением околошовная зона нагревается до температур, близких к температуре плавления. В этих условиях в пограничных со швом зернах металла развивается высокотемпературная химическая неоднородность и наблюдается подплавление границ зерен. Это подплавление приводит к образованию особого вида дефектов - надрывов. При последующем остывании соединения надрывы служат очагами возникновения холодных трещин.
Очевидно, что в том случае, когда температура плавления металла шва ниже температуры плавления основного металла, создаются условия для "залечивания” (заполнения) надрывов. Высокая стойкость соединений легированных сталей с аустенитными и бейнито-мартенситными швами против образования холодных околошовных трещин может быть обусловлена не только интенсивным нарастанием в них временных напряжений, как это было показано выше, но и низкой температурой плавления сварочных проволок. По нарастанию температуры плавления сопоставляемые швы располагаются в следующий ряд: аустенитный шов ( Св-08Х20Н9Г7Т) – Тпл = 1460°С; мартенситно-бейнитный шов (проволока Св-10Х5М) Тпл = 1510°С; ферритно-перлитный шов (проволока Св-08ГА) Тпл = 1520°С. В такой же последовательности располагаются соединения с перечисленными швами и по стойкости против образования холодных трещин в околошовной зоне.