
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
2.2.3. Сварка в среде защитных газов
Сварка в защитных газах широко используется для изготовления конструкций из низколегированных высокопрочных сталей.
Конструктивные элементы при сварке в среде защитных газов выбирают по ГОСТ 14771-76.
Подготовка кромок зависит от разновидности способа сварки в среде защитных газов.
Высокая концентрация углерода в металле шва определяет преимущественное развитие процессов раскисления за счет углерода, которые, как известно, приводят к парообразованию. Поэтому при сварке в среде СО2 в состав проволок необходимо вводить раскислители для подавления реакции обезуглероживания (кремний и марганец). При сварке в СО2 используются проволоки CB-08Г2C, Св-08ГСМТ, Св-08ХГСМА, Св-08ХГСМФА и др. в зависимости от состава свариваемой стали и требований к механическим характеристикам.
При сварке в среде инертных газов и в смесях инертных газов и активных можно использовать любую из тридцати марок легированной проволоки, предусмотренной ГОСТ 2246-70; ту или иную марку необходимо выбирать в зависимости от состава и свойств свариваемых сталей и от требуемого состава металла шва. Например, при сварке молибденовых, хромомолибденовых и хромомолибденованадиевых сталей можно использовать соответственно электродные проволоки Св-08МХ, Св-08ХМ, Св-08ХМРА и др.
Отсутствие шлаковой корки на поверхности шва при сварке в среде защитных газов позволяет широко использовать методы регулирования термического цикла сварки без применения предварительного подогрева (сварка каскадом, горкой, раздвинутыми дугами и т. д.).
2.2.4. Электрошлаковая сварка
Основные типы и конструктивные элементы сварных соединений и швов должны соответствовать требованиям ГОСТ 15164-78, который регламентирует основные типы соединений, выполняемых всеми разновидностями электрошлаковой сварки.
Для электрошлаковой сварки низколегированных сталей повышенной прочности и среднелегированных высокопрочных сталей применяют флюсы марок АН-8, АН-22 и др. При выборе электродной проволоки для электрошлаковой сварки следует исходить из требований к составу металла шва.
Низкие скорости охлаждения околошовной зоны при электрошлаковой сварке приводят к длительному пребыванию ее в области высоких температур, вызывающих рост зерна и охрупчивание металла. Поэтому после электрошлаковой сварки низколегированных высокопрочных сталей необходима высокотемпературная термообработка сваренных изделий для восстановления механических свойств до необходимого уровня. Время с момента окончания сварки до проведения термообработки должно быть регламентировано.
Высокие значения погонной энергии при электрошлаковой сварке позволяют в ряде случаев проводить сварку без предварительного подогрева. Однако возможно образование в шве горячих трещин и горячих и холодных отколов в околошовной зоне. Трещины - отколы возникают преимущественно в начале шва и на участках возобновления процесса из-за случайных перерывов. Для предупреждения трещин в околошовной зоне при сварке жёстко закреплённых элементов обходим предварительный подогрев до температуры 150 - 200 °С.