
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
10.2 Особенности технологии сварки сталей одного структурного класса
В случае сварки сталей одного структурного класса, но с разной степенью легирования обычно к сварным швам не предъявляются требования повышенной прочности или особых свойств, характерных для более легированной стали. Поэтому при выборе сварочных материалов и технологии сварки следует отдать предпочтение материалам и технологии, обычно применяемым для менее легированной стали.
Технологические режимы сварки и температуру подогрева следует выбирать по свойствам более легированной стали. При необходимости исключить подогрев осуществляют предварительную наплавку кромок деталей из более легированной стали (с подогревом) электродами типа Э–42А. Толщина наплавленного слоя должна исключить при сварке основного шва распространение температуры, превышающей АС1, за пределы толщины наплавленного слоя.
При сварке между собой высокохромистых мартенситных, ферритных и ферритно-аустенитных сталей выбор сварочных материалов должен основываться на необходимости получения швов без трещин и без хрупких участков в них.
При сварке 12%-ных хромистых мартенситных сталей с высокохромистыми ферритными и ферритно-аустенитными предпочтительнее выбирать сварочные материалы ферритно-аустенитного класса, так как применение ферритных сварочных материалов приводит к получению швов с крупным зерном и низкой пластичностью в исходном состоянии после сварки.
При сварке разнородных аустенитных сталей следует иметь в виду повышенную склонность аустенитных швов к образованию горячих трещин. Поэтому при выборе сварочных материалов следует, прежде всего, исходить из необходимости надежного предотвращения возникновения горячих трещин в шве. Технология сварки этих сталей зависит от соотношения в металле хрома и никеля (запаса аустенитности). Если сваривают разнородные стали с малым запасом аустенитности, то можно использовать электроды, рекомендуемые для сварки как одной, так и другой стали. При сварке сталей с большим запасом аустенитности необходимо использовать сварочные материалы, позволяющие получить в шве однородную аустенитную или аустенитно-карбидную структуру при обязательном дополнительном легировании элементами, повышающими стойкость против образования трещин.
10.3. Особенности сварки сталей разного структурного класса
Возможные сочетания сталей различных структурных классов в сварных соединениях можно подразделить на две группы: 1 – сварные соединения перлитных сталей с высокохромистыми сталями мартенситного, мартенситно-ферритного и ферритного классов; 2 – сварные соединения перлитных сталей с аустенитными хромоникелевыми сталями.
При сварке перлитных сталей с 12%-ными хромистыми сталями с целью обеспечения наибольшей пластичности шва применяют сварочные материалы перлитного класса. Температуру предварительного подогрева соединения следует выбирать по характеристикам высоколегированной 12%-ной хромистой стали так же, как и режим термообработки.
При сварке перлитных сталей с 17–28%-ными хромистыми сталями использование электродов перлитного класса нецелесообразно из-за чрезмерного легирования шва хромом из высокохромистой стали и потери им вследствие этого пластичности.
При сварке перлитных сталей с аустенитными всегда следует применять аустенитные сварочные материалы, обеспечивающие получение наплавленного металла с таким запасом аустенитности, чтобы с учетом расплавления и участия в формировании шва низколегированной составляющей (перлитной стали) обеспечить в высоколегированном шве аустенитную структуру, что позволяет предотвратить образование малопластичных участков с мартенситной структурой в корневых швах и слоях, примыкающих к перлитным сталям.
При сварке перлитной закаливающей стали с аустенитной на кромки закаливающейся стали проводят наплавку аустенитными электродами с предварительным или сопутствующим подогревом. Затем проводят отпуск деталей с наплавленными кромками для устранения закалки в околошовной зоне. После этого проводят сварку на режимах, оптимальных для аустенитной стали.