
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
8.2. Проблемы свариваемости
Основной трудностью при сварке титана является его высокая химическая активность по отношению к газам при нагреве и расплавлении. При температурах 350°С и выше титан активно поглощает кислород с образованием структур внедрения, имеющих высокую прочность, твердость и малую пластичность. Кислород стабилизирует α-фазу за счет образования TiO2 (рутила) с образованием поверхностного слоя большой твердости, который называется альфированым слоем.
При температурах 550°С и выше титан энергично растворяет азот с образованием малопластичных фаз внедрения - нитридов TiN и Ti3N. Азот, находящийся в титане в виде нитридов и элементов внедрения, повышает твердость и снижает его пластичность. Концентрируется в альфированом поверхностном слое . Попадание частиц этого слоя в сварной шов приводит к охрупчиванию металла и образованию холодных трещин, поэтому перед сваркой его необходимо удалять.
Водород даже при малом содержании наиболее резко ухудшает свойства титана. Он образует отдельную фазу – гидрид титана (TiH2), которая сильно охрупчивает титан и способствует образованию холодных трещин через длительное время после сварки (замедленное разрушение). Кроме тог, водород способствует образованию пор. Допустимое содержание водорода - до 0,015%. Для снижения содержания водорода сварочную проволоку подвергают вакуумному отжигу.
Титан и его сплавы чувствительны к росту зерна при нагреве до высоких температур, особенно в области β-фазы. Низкая теплопроводность титана способствует увеличению времени пребывания шва и ОШЗ при высоких температурах. Например, время пребывания ОШЗ на титане выше температуры превращения превосходит аналогичный параметр для стали в 2,5-З раза. Чтобы преодолеть указанное затруднение, сварку выполняют при минимально возможней погонной энергии.
Удельное электросопротивление титана примерно в 4 раза больше, чем у железа, поэтому вылет плавящегося электрода должен быть относительно небольшим.
Швы, сваренные на техническом титане и низколегированных α-сплавах, имеют крупнокристаллическую структуру. Для металла шва и ОШЗ характерна микроструктура игольчатой α-фазы, образование которой связано с превращением высокотемпературной α-фазы при быстром остывании. Игольчатость фазы свидетельствует о мартенситной кинетике превращения. Структурные участки ОШЗ на титане аналогичны таким же участкам на стали. Непосредственно к металлу шва примыкают участки крупного зерна или перегрева, затем следуют участки полной перекристаллизации с увеличенными размерами зерен по сравнению с основным металлом. ОШЗ очерчена ярко выраженной границей с не изменившим микроструктуру основным металлом.
Важным условием предотвращения охрупчивания металла шва и около шовной зоны с мартенситоподобной игольчатой микроструктурой является обеспечение чистоты металла и выбор режимов сварки с оптимальным термическим циклом.
Термообработку сварных соединений из титана и его сплавов проводят с целью снятия остаточных напряжений (нагрев до 650°С, время выдержки 30-40 мин, остывание с печью) и для сварных соединений из титана повышенной прочности (двухфазные термические упрочняемые сплавы) с целью увеличения пластичности (нагрев до 800-950°С с последующим непрерывным остыванием).
- и псевдо--сплавы титана удовлетворительно свариваются различными способами сварки плавлением в широком диапазоне скоростей охлаждения. Наилучшие характеристики пластичности достигаются при средних и относительно высоких скоростях охлаждения (при содержании газов ниже допустимой нормы). Для металла шва и ОШЗ характерна микроструктура игольчатой α-фазы, образование которой связано с мартенситным превращением высокотемпературной -фазы при быстром остывании
При сварке сплавов, содержащих свыше 3% -стабилизаторов, металл шва уступает основному металлу по пластичности и более склонен к образованию трещин. Для обеспечения равнопрочности сварного соединения при сварке необходимо применять присадочные материалы, отличные от основного металла.