
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
7.2. Проблемы свариваемости
Основные трудности при сварке алюминия и его сплавов:
1) Наличие и возможность образования пленки тугоплавкого окисла Al2O3 (Тпл=2050°С) с плотностью большей, чем у алюминия. Ее удаление(разрушение) осуществляется с помощью флюсов, либо катодным распылением (при сварке на обратной полярности).
2) Резкое падение прочности при высоких температурах может привести к разрушению (проваливанию) твердого металла нерасплавившейся части кромок под действием собственного веса.
3) Высокая жидкотекучесть алюминия требует особой тщательности подготовки кромок, либо применения подформовывающих устройств для предотвращения вытекания металла через корень шва.
4) Из-за большой величины коэффициента линейного расширения и низкого модуля упругости алюминиевые сплавы имеют повышенную склонность к короблению.
5) Большая склонность к порообразованию за счет водорода. Выделению водорода препятствует в процессе кристаллизации окисная пленка, покрывающая сварочную ванну, а также низкий коэффициент диффузии водорода в алюминии. Поры образуются преимущественно внутри металла шва, а также у линии сплавления. Наибольшей склонностью к порообразованию имеют сплавы АМг. Для предупреждения пор при сварке толстого металла применяют предварительный и сопутствующий подогрев.
6) Вследствие высокой теплопроводности алюминия необходимо применение мощных источников теплоты, а также предварительный и сопутствующий подогрев до температуры 150°С.
7) Металл шва склонен к образованию трещин в связи с грубой столбчатой структурой металла шва, выделением по границам зерен легкоплавких эвтектик и развитием значительных усадочных напряжений в результате высокой литейной усадки алюминия. Легкоплавкая эвтектика на основе кремния (Тпл=577°С) приводит к появлению трещин, если содержание кремния невелико (до 0,5%); при содержании кремния свыше 4-5% образующаяся эвтектика "залечивает" трещины.
7.3. Способы сварки
7.3.1. РДС
РДС покрытыми электродами применяется для сварки изделий из технически чистого алюминия, алюминиево-марганцевого сплава и алюминиево-магниевого сплава. Сварка металла толщиной до 10 мм обычно без подогрева, более 10мм с предварительным подогревом. Температуру подогрева выбирают в зависимости от толщины металла в интервале 100-400°С. Сварку производят постоянным током обратной полярности, без колебания юнца электрода. Электроды применяют диаметром 5-8мм. Сила тока ~60dэ. Металл толщиной до 20 мм сваривают без разделки кромок с малым зазором (0,5-1мм). Сварка обычно двусторонняя.
При сварке чистого алюминия и сплавов АМц обычно используют стержни из металла, близкого по составу основному металлу. Для сварки сплавов АМг необходимо в проволоке иметь большое содержание магния вследствие его частичного улетучивания.
Основу электродных покрытий для сварки алюминия и сплавов АМц составляют галоидные соли щелочных и щелочноземельных металлов и криолит (Na3AlF6). Наибольшее распространение получили два типа покрытия. Покрытие первого типа состоит из 65% флюса АФ-4А(50% KCl, 14% LiCl, 8% NaF, 28% NaCl) и 35% криолита. Bторой тип АН-А1 состоит из 50% KCl, 30% NaCl и 20% Na3AlF6. Покрытие замешивают на воде или растворе поваренной соли.
Электроды для сварки алюминиево-магниевых сплавов широкого распространения не получили.