
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
Влияние легирующих элементов на процессы превращений, протекающие при нагреве сталей, связано с изменением температуры растворения карбидов, скорости диффузии углерода и легирующих элементов в феррите, склонности к росту зерна, положения критических температур и содержания углерода в эвтектоиде. Особое значение все эти факторы приобретают при увеличении скорости нагрева стали.
Карбиды легирующих элементов имеют более высокую температуру растворения, чем карбид железа. Как правило, температура растворения тем выше, чем больше степень химического сродства легирующего элемента к углероду, и чем выше энергия связи в данном карбиде.
Большинство легирующих элементов повышает равновесную температуру эвтектоидного превращения при нагреве. Наиболее сильно повышается температура Ас1 титаном, менее значительно молибденом, кремнием и вольфрамом. Совсем немного повышает эту температуру - хром. Марганец и никель, наоборот, понижают температуру эвтектоидного превращения при нагреве. В соответствии с этим легирование никелем всегда должно снижать температуру растворения цементита в доэвтектоидных сталях при увеличении скорости нагрева при сварке. Легирование марганцем при изотермическом нагреве и малых скоростях нагрева должно понижать температуру растворения цементита. Все остальные карбидообразующие элементы приводят к повышению температуры растворения карбидов, что должно быть особенно заметно с увеличением скорости нагрева при сварке.
Гомогенизация аустенита, образующегося при превращении перлита, определяется диффузией углерода и легирующих элементов в γ- раствор. Большое значение имеет гомогенизация по углероду. Скорость диффузии углерода в γ- железе ускоряют никель и кобальт. Алюминий, кремний, марганец, хром, молибден, вольфрам, ванадий уменьшают скорость диффузии углерода в растворе. Поэтому в стали, легированной этими элементами, при быстропротекающем нагреве при сварке, температура гомогенизации аустенита повышается.
Практически все легирующие элементы, кроме марганца, понижают способность к росту зерна в стали при нагреве. Марганец увеличивает склонность к росту зерна при нагреве, никель и кремний мало влияют на эту характеристику стали. Карбидообразующие элементы, особенно дающие труднорастворимые карбиды, препятствуют росту зерна. Такое влияние легирующих элементов приводит к тому, что у разных сталей в зоне максимальных температур величина выросшего зерна оказывается разной.
В зонах сварных соединений, нагревающихся в интервале температур A1 – A3 влияние легирующих элементов на превращение перлита и гомогенизацию аустенита, наиболее ощутимо. Образовавшийся в этих условиях аустенит имеет высокую степень неоднородности по составу, за счет затруднения растворения карбидов и гомогенизации аустенита.
1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
В условиях изотермического превращения аустенита, влияние легирующих элементов сводится главным образом к увеличению инкубационного периода до начала распада аустенита при образовании различных продуктов превращения. Соответственно возрастает и время конца превращения. На диаграмме изотермического превращения аустенита это выражается в сдвиге вправо от вертикальной оси С-образной кривой.
В условиях непрерывного охлаждения увеличение инкубационного периода приводит к уменьшению критической скорости охлаждения при закалке. В некоторых высоколегированных сталях критическая скорость охлаждения уменьшается настолько, что даже медленное охлаждение не позволяет получить распада аустенита на феррито-перлитную смесь или бейнит, и аустенит переохлаждается без распада до температур мартенситного превращения или даже до комнатной температуры, что характерно для мартенситных и аустенитных сталей.
Так как все основные легирующие элементы, вводимые в конструкционные стали, снижают температуру начала и конца мартенситного превращения, что способствует увеличению в сталях после охлаждения количества остаточного аустенита. (см.рис. 1 ). Легирующие элементы влияют и на наложение критических точек при охлаждении, увеличивая несколько интервал между температурами Aс1 и Ас3.
Рис. 1. Влияние легирующих элементов на температуру мартенситного превращения (а) и количество остаточного аустенита (б) в стали с 1% С
Влияние легирующих элементов на процессы, протекающие при нагреве и охлаждении, сказывается на строении и свойствах сварных соединений легированных сталей. С одной стороны, увеличение степени негомогенности аустенита, образующегося при сварочном нагреве за счет повышения стойкости карбидов легирующих элементов, и уменьшение скорости диффузии должно приводить к понижению устойчивости аустенита и увеличению его склонности к распаду при более высокой температуре с образованием более стабильных структур. С другой стороны, повышение устойчивости аустенита в тех зонах, где легирующие элементы растворились, обуславливает возможность переохлаждения аустенита до более низких темпеpaтур, чем в нелегированных сталях с образованием менее равновесных структур. Такая двойственность во влиянии легирующих элементов на процессы, протекающие в зонах теплового влияния при сварке, приводит к тому, что легирование стали часто увеличивает степень неоднородности свойств в зонах теплового воздействия сварных соединений.
2. ТЕХНОЛОГИЯ СВАРКИ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ
С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ УГЛЕРОДА