
- •Дисциплина: Технология сварки конструкционных сталей и сплавов Количество часов: 36 час. Введение
- •1.Влияние легирующих элементов на фазовые составляющие стали
- •1.1. Влияние легирующих элементов на процессы, протекающие при нагреве.
- •1.2. Влияние легирующих элементов на превращение аустенита при охлаждении.
- •2.1. Свариваемость сталей
- •2.2 Технология сварки
- •2.2.1 Сварка рдс
- •Некоторые типы электродов, применяемые для сварки низколегированных закаливающихся сталей
- •2.2.2. Сварка под флюсом
- •2.2.3. Сварка в среде защитных газов
- •2.2.4. Электрошлаковая сварка
- •3. Сварка среднелегированных высокопрочных сталей
- •3.1 Свариваемость сталей
- •3.2. Технологические методы предупреждения образования хт
- •3.2.2. Регулирование термического цикла сварки
- •3.2.3 Регулирование временных напряжений
- •3.2.4. Применение сварочных проволок с пониженной температурой плавления.
- •3.2.5. Уменьшение содержания водорода в зтв
- •3.2.6 Термообработка сварных соединений после сварки
- •3.2.7 Предварительная наплавка кромок
- •3.3. Технология сварки
- •3.3.1 Особенности сварки конструкций, подвергающихся полной термообработке
- •3.3.2. Сварные соединения, не подвергающееся термообработке после сварки.
- •3.3.3. Сварные соединения, подвергающиеся после сварки только высокому отпуску
- •3.3.4 Дуговая сварка покрытыми электродами
- •3.3.5. Сварка под флюсом
- •3.3.6. Сварка в среде защитных газов
- •4. Высоколегированные хромистые стали
- •4.1. Структура и фазовое состояние
- •4.2.Технология сварки стали мартенситного класса
- •4.3. Сварка высокохромистых ферритных сталей
- •5. Высоколегированные хромоникелевые стали
- •5.1. Фазовое и структурное состояние
- •5.2. Проблемы свариваемости
- •5.3. Технология сварки
- •5.4. Сварка под флюсом
- •5.5. Электрошлаковая сварка
- •5.6. Сварка в защитных газах
- •6. Сварка чугуна
- •6.1. Классификация чугунов
- •6.2. Свариваемость чугуна
- •6.3. Способы сварки чугуна
- •6.3.1. Горячая сварка
- •6.3.2.Полугорячая сварка чугуна
- •6.3.2.1. Получение в шве серого чугуна
- •6.3.2.1. Получение в шве низкоуглеродистой стали
- •6.3.3.Холодная сварка чугуна
- •6.3.3.1.Электрода на основе никеля
- •6.3.3.2.Электроды на основе меди
- •7.1. Вопросы металловедения
- •7.2. Проблемы свариваемости
- •7.3. Способы сварки
- •7.3.2. Автоматическая сварка по флюсу
- •7.3.3. Электрошлаковая сварка
- •7.3.4. Сварка в инертных газах
- •7.3.4.1. Аргонодуговая сварка однофазным переменным током
- •7.3.4.2. Аргонодуговая сварка трехфазным переменным током
- •7.3.4.3. Сварка плазменной дугой обратной полярности
- •7.3.5. Электронно-лучевая сварка.
- •8. Сварки титана и его сплавов
- •8.1. Металловедение сплавов титана
- •8.2. Проблемы свариваемости
- •8.3. Способы сварки
- •9. Сварка меди и ее сплавов
- •9.1. Основные сведения
- •9.2. Особенности сварки меди и ее сплавов
- •10. СварКаРазнородных сталей
- •10.1 Образование шва и околошовной зоны.
- •10.2 Особенности технологии сварки сталей одного структурного класса
- •10.3. Особенности сварки сталей разного структурного класса
5.2. Проблемы свариваемости
Хромоникелевые высоколегированные стали относятся к удовлетворительно, а иногда и хорошо свариваемым сталям.
Основные трудности при сварке:
Склонность к образованию ГТ – аустенитные стали.
Склонность к образованию ХТ – мартенситные и аустенитно-мартенситные стали.
Выделение при сварочном нагреве δ –феррита.
Выделение карбида из аустенита в ЗТВ.
Образование пор
Склонность к ГТ определяется большой протяженностью температурного интервала кристаллизации, ликвацией по сере и фосфору, склонность к образованию столбчатой структуры кристаллизации. Аустенитные стали имеют большую усадку при остывании, что ведет к повышению темпа высокотемпературной деформации.
Меры борьбы с ГТ:
Контроль по сере и фосфору.
Борьба со столбчатой структурой – введение в структуру аустенита тугоплавкой второй фазы (до 6% δ -феррита, карбидов, интерметаллидов), дополнительное перемешивание сварочной ванны.
Снятие перегрева сварочной ванны путем введения дополнительного присадочного материала (порошка, гранул, проволоки).
Сварка с минимальным тепловложением (подогрев вреден).
Меры борьбы с ХТ – предварительный и сопутствующий подогрев, исключение водорода.
Влияние режима сварки на сопротивляемость ГТ весьма велико. Режимы сварки определяют характер и схему кристаллизации, и, что весьма важно, время пребывания металла шва и ОШЗ в области высоких температур.
На схеме представлено совместное влияние силы тока и скорости сварки на образование ГТ при сварке аустенитных сталей
Вблизи зоны сплавления в высокотемпературной области возможно растворение карбидов сильных карбидообразующих элементов –V, Ti, Nb, Zr. это неблагоприятно сказывается при эксплуатации при повышенных и высоких температурах. Перешедший ранее в твердый раствор углерод перемещается к границам зерен и выделяется в виде карбидов хрома, несмотря на наличие сильных карбидообразующих элементов. В районе ОШЗ резко возрастает склонность к МКК и падает прочность границ зерен – «ножевая коррозия».
Меры предупреждения МКК и локального хрупкого разрушения в ОШЗ – снижение общего содержания углерода и отказ от карбидного упрочнения в жаропрочных сталях. Для восстановления стойкости к МКК сварных соединений применяется термообработка – выдержка 3÷5 ч при 850 ÷ 900 оС.
Основной причиной пор является водород, поступающий в сварочную ванну из флюса, электродного покрытия или защитного газа Азот хорошо растворяется в высоколегированных сталях, поэтому пор в сварных швах не вызывает.
. Эффективное средство предупреждения пор – удаление влаги из флюсов, электродных покрытий и газов. Флюсы и электроды необходимо прокаливать непосредственно перед сваркой, а газ осушать в процессе сварки. Сварку производят фторидными флюсами и электродами с фтористо-кальцыевыми покрытиями на постоянном токе обратной полярности.
При сварке в аргоне некоторых аустенитных сталей возможно образование пор по границе оплавления. Добавка к аргону 2-5 % кислорода предупреждает образование пор.