
- •1. Законы ома и кирхгофа и их использование для расчетов цепей постоянного тока.
- •2. Режимы работы электрических цепей.
- •3. Расчет цепей постоянного тока с одним источником тока.
- •4. Расчет сложных цепей постоянного тока с применением различных методов.
- •5. Законы фарадея-максвелла и их использование для объяснения работы различных электромагнитных аппаратов.
- •7. Получение синусоидального тока. Синхронные генераторы.
- •8. Значения величин переменного тока, векторные диаграммы.
- •9. Сопротивления и мощности в цепях переменного тока. Треугольники
- •10. Цепи переменного тока с единичными элементами r, l, c.
- •11. Цепь переменного тока с последовательным соединением элементов
- •12. Цепи переменного тока со смешанным соединением элементов r, l, c.
- •13. Символический метод расчета цепей переменного тока.
- •15. Четырехпроводная трехфазная система. Векторная диаграмма. Роль нулевого провода.
- •16. Трансформаторы. Устройство, принцип действия, режимы работы
- •17. Опыты холостого хода и короткого замыкания трансформатора.
- •18. Внешняя характеристика и кпд трансформатора. Трехфазные трансформаторы.
- •19. Асинхронные двигатели. Устройство, принцип действия, режимы работы.
- •20. Рабочие характеристики и способы пуска Асинхронного Двигателя.
- •21. Синхронные двигатели. Устройство, принцип действия и назначение.
- •22. Характеристики синхронных двигателей и электрические схемы их включения.
- •Устройство электрической машины постоянного тока
- •Устройство электрической машины постоянного тока
21. Синхронные двигатели. Устройство, принцип действия и назначение.
Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля, создаваемого током статора, что является важнейшим эксплуатационным свойством. В основном синхронные машины применяются в качестве генераторов для выработки электрической энергии на электростанция.
Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения).
Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии.
Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов. Индукторы синхронных машин имеют две различные конструкции:
Явнополюсную;
Неявнополюсную.
Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока.
При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором.
Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре
22. Характеристики синхронных двигателей и электрические схемы их включения.
В электрической системе большой мощности напряжение U=const и частота f=const. Поэтому значение электромагнитного момента Мэм и мощности P синхронного двигателя подключенного к такой системе, при постоянном токе возбуждения Iв=const зависят только от угла θ (θ - сдвиг фаз между векторами напряжения Ù и ЭДС Ė0). Зависимости Мэм(θ) и P(θ) называются угловыми характеристиками синхронного двигателя. Они позволяют анализировать процессы в синхронном двигателе при изменении нагрузки.
Зависимость тока статора от тока возбуждения I(Iв) при постоянном тормозном моменте на валу Мтор = const называется U-образной характеристикой. Если на валу не тормозного момента, то пренебрегая всеми видами потерь можно считать ток фазы статора синхронного двигателя реактивным:
İ(Iв) = İp(Iв) = (-Ė0 + Ù)/jX = ( Ù + jωψ0 (Iв))/jX
Способы пуска синхронного электродвигателя
Возможны следующие способы пуска:
асинхронный пуск на полное напряжение сети;
пуск на пониженное напряжение через реактор или автотрансформатор.
Асинхронный пуск синхронного электродвигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной. В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.
23. Генераторы постоянного тока. Устройство, принцип действия, характеристики.