- •Для студентов специальности
- •Введение
- •1 Классификация медицинкой аппаратуры
- •1.1 Классификация электротерапевтической аппаратуры
- •1.2 Классификация лечебных физических факторов
- •1.3 Современные представления о механизмах физиологического и лечебного действия физических факторов
- •2 Аппаратура для терапии постоянным и нч током
- •2.1 Физические обоснования и методики проведения гальванизации и лекарственного электрофореза
- •2.2 Аппараты для местной гальванизации и лекарственного электрофореза
- •3 Электростимуляция
- •3.1 Виды сигналов электростимуляции
- •3.1.1 Форма, длительность, мощность импульса.
- •3.1.2 Временные законы следования импульсов и пауз
- •3.1.3 Виды модуляции и огибающих
- •3.1.4 Длительность и число процедур электростимуляции нервно-мышечного аппарата
- •3.1.5 Синусоидально модулированные токи (смт)
- •3.1.6 Диадинамические токи (ддт)
- •3.2. Программно-аппаратная реализация аппаратов электростимуляции
- •3.3. Аппараты электросна и электроанальгезии
- •3.3.1 Аппараты электросна
- •3.3.2.Физиологическое обоснование применения электрического воздействия при лечении болевых синдромов
- •3.3.3 Биотехническая система электроанальгезии
- •3.4. Электрокардиостимуляторы
- •3.4.1 Основные электрофизиологические сведения
- •3.4.2 Электрическая кардиостимуляция
- •3.4.3 Асинхронный экс(с постоянной частотой импульсов)
- •3.4.4 Запрещающий экс
- •3.4.7 Бифокальный экс (с предсердно-желудочиовой последовательностью импульсов)
- •3.4.8 Орторитмический экс
- •3.4.9 Техническое исполнение имплантируемых экс
- •3.4.10 Чреспищеводный кардиостимулятор для неотложной терапии
- •3.5. Электростимуляция внутренних органов и опорно-двигательного аппарата
- •3.6 Многоканальная электростимуляция опорно-двигательного аппарата
- •3.6.8 Структурная схема и технические характеристики устройства «Миотон – 2 »
- •4 Магнитотерапевтические аппараты
- •4.1. Физические обоснования и методика проведения процедур
- •4.2. Аппараты для низкочастотной магнитотерапии
- •4.3 Биотропные параметры магнитных полей
- •4.4 Влияние естественных электромагнитных полей на живые организмы
- •4.5 Механизмы действия магнитных полей на живой организм
- •4.6 Промышленные магнитотерапевтические аппараты. Обзор и анализ требований
- •4.6.1 Магнитотерапевтические аппараты распределенного действия
- •4.6.2 Магнитотерапевтические аппараты локального действия
- •4.6.3 Магнитотерапевтические аппараты общего воздействия
- •4.7 Анализ задачи общего воздействия динамическим магнитным полем на человека и формирование требований на технические средства комплексной магнитотерапии
- •4.7.1 Формирование метрики векторов магнитного поля
- •4.7.2. Анализ метрики поля
- •4.7.3. Анализ метрики управления
- •4.8. Виды индукторов и создаваемых ими полей
- •5 Способы и устройства терапии с биологической обратной связью
- •Упражнений с ос по биологическим факторам
- •5.4 Алгоритм функционирования и структурная компоновка аппаратного комплекса
- •6 Электротерапевтические высокочастотные аппараты.
- •6.1. Физические обоснования и методики проведения процедур высокочастотной терапии
- •6.1.1. Физические основы действия высокочастотных колебаний на ткани организма
- •6.1.2. Диатермия
- •6.1.3. Электрохирургия
- •6.1.4. Дарсонвализация и терапия током надтональной частоты
- •6.2 Индуктотермия
- •6.3 Аппараты для дарсонвализации и терапии током надтональной частоты
- •6.6 Аппарат для общей дарсонвализации
- •7.1 Импульсная увч-терапия
- •7.2 Транзисторный вч тракт для аппарата увч терапии
- •7.3 Требования к вч тракту и его структура
- •7.4 Сумматор мощности
- •7.5 Общие сведения
- •7.6 Измеритель мощности для аппаратов увч-терапии
- •8 Ультразвуковая терапевтическая аппаратура
- •8.1 Физические обоснованияи методика проведения процедур ультразвуковой терапии
- •8.2 Аппаратная реализация аппаратов ультразвуковой терапии
- •8.3 Ультразвуковая терапевтическая техника
- •8.4 Акустоэлектронные терапевтические аппараты
- •9 Аппаратура для терапии постоянным электрическим полем, аэроионами и электроаэрозолями.
- •9.1 Физические обоснования и методика проведения процедур терапии постоянным электрическим полем и аэроионами.
- •9.2 Аппараты для франклинизации и аэроионотерапии
- •9.3 Физические обоснования и методики проведения процедур терапии электроаэрозолями
- •9.4 Аппараты для электроаэрозольтерапии
7.3 Требования к вч тракту и его структура
ВЧ тракт должен обеспечивать требуемую мощность (Рвых80100 Вт, 20%) в активной части комплексного сопротивления во всем диапазоне изменения ее реактивной составляющей, требуемую частоту f=27,120,6% МГц, автоматическую настройку тракта на согласованный режим, плавную регулировку мощности от нулевой до максимальной величины, подавление нежелательных излучений в эфир (2-я и 3-я гармоники).
Структурная схема содержит: 2-х канальный генератор с внешним возбуждением, задающий генератор (ЗГ), 2 канала усиления мощности (УМ1 с фазоинверсным звеном на входе и УМ2 с фазоинверсным звеном на выходе), фильтры гармоник Ф1 и Ф2, синфазный сумматор (С), конструктивно объединенный с фильтром-трансформатором и датчиком отраженной волны (Д), согласующее устройство (СУ), неоднородную длинную линию (ДЛ), на конце которой включена комплексная изменяющаяся нагрузка, образованная электродами (Э) и пациентом (П).
Рисунок 7.6 – Структурная схема транзисторного ВЧ тракта
Сигналы, вырабатываемые ЗГ, поступают на 2 канала усиления УМ1 и УМ2, после чего происходит сложение их мощностей в сумматоре С. С выхода сумматора ВЧ сигнал поступает на СУ, которое с помощью двухпроводной линии соединено с электродами.
Двухканальный генератор с внешним возбуждением предназначен для генерации с помощью ЗГ сигнала с частотой 27,12 МГц и его усиления по мощности двумя усилителями и последующей фильтрацией в канале фильтрами Ф1 и Ф2.
Управляемый кварц ЗГ выполнен на транзисторе VT2, в коллекторную цепь которого включен колебательный контур, образованный катушкой L и емкостью делителя.
Рисунок 7.7 – Схема ВЧ части задающего генератора
В цепи ОС генератора включен кварцевый резонатор, обеспечивающий требуемую стабильность f. Данный генератор управляется по постоянному току транзистором VT1, благодаря которому обеспечивается плавная (ступенчатая) регулировка выходного напряжения и, следовательно, мощности в нагрузке. ЗГ включает предварительный усилитель мощности на VT3 и VT4 и имеет два симметричных выхода. Он генерирует сигнал f=27,12 МГц, мощностью 8 Вт на нагрузке 50 Ом по каждому выходу.
Каждый из усилителей УМ1 и УМ2 представляет собой двухтактную схему с общим эмиттером, имеющую следующие параметры: Uкол.max=100 В, Iкол.max=15 А, мощность рассеивания на коллекторе Р=70 Вт, предельная частота усиления f1=150 МГц, расчетное значение Rвн.транз=6 Ом.
Исходя из максимального значения мощности, рассеиваемой на коллекторе транзистора (Р=70 Вт) и задавая границы возможного изменения сопротивления нагрузки величиной коэффициента отражения (Г)=0,15 (КСВН=1,35), определяются параметры усилителей мощности.
Эксперимент – при Ек=27 В и при условии, что СУ трансформирует нагрузку в плоскость усилителя с КСВН не более 1,35, выходная мощность каскада составляет 56 Вт. При этом коэффициент усиления по мощности УМ1 и УМ2 равен 7, а КПД каскадов, определенный как отношение мощности в нагрузке к мощности, потребляемой от источника коллективного питания, составил 0,55. Для обеспечения требований по помехозащитности используют ФНЧ с fср=30 МГц, при этом подавление 2-й и 3-й гармоник рабочей частоты составляет соответственно 54 и 72 дБ.
