
- •Для студентов специальности
- •Введение
- •1 Классификация медицинкой аппаратуры
- •1.1 Классификация электротерапевтической аппаратуры
- •1.2 Классификация лечебных физических факторов
- •1.3 Современные представления о механизмах физиологического и лечебного действия физических факторов
- •2 Аппаратура для терапии постоянным и нч током
- •2.1 Физические обоснования и методики проведения гальванизации и лекарственного электрофореза
- •2.2 Аппараты для местной гальванизации и лекарственного электрофореза
- •3 Электростимуляция
- •3.1 Виды сигналов электростимуляции
- •3.1.1 Форма, длительность, мощность импульса.
- •3.1.2 Временные законы следования импульсов и пауз
- •3.1.3 Виды модуляции и огибающих
- •3.1.4 Длительность и число процедур электростимуляции нервно-мышечного аппарата
- •3.1.5 Синусоидально модулированные токи (смт)
- •3.1.6 Диадинамические токи (ддт)
- •3.2. Программно-аппаратная реализация аппаратов электростимуляции
- •3.3. Аппараты электросна и электроанальгезии
- •3.3.1 Аппараты электросна
- •3.3.2.Физиологическое обоснование применения электрического воздействия при лечении болевых синдромов
- •3.3.3 Биотехническая система электроанальгезии
- •3.4. Электрокардиостимуляторы
- •3.4.1 Основные электрофизиологические сведения
- •3.4.2 Электрическая кардиостимуляция
- •3.4.3 Асинхронный экс(с постоянной частотой импульсов)
- •3.4.4 Запрещающий экс
- •3.4.7 Бифокальный экс (с предсердно-желудочиовой последовательностью импульсов)
- •3.4.8 Орторитмический экс
- •3.4.9 Техническое исполнение имплантируемых экс
- •3.4.10 Чреспищеводный кардиостимулятор для неотложной терапии
- •3.5. Электростимуляция внутренних органов и опорно-двигательного аппарата
- •3.6 Многоканальная электростимуляция опорно-двигательного аппарата
- •3.6.8 Структурная схема и технические характеристики устройства «Миотон – 2 »
- •4 Магнитотерапевтические аппараты
- •4.1. Физические обоснования и методика проведения процедур
- •4.2. Аппараты для низкочастотной магнитотерапии
- •4.3 Биотропные параметры магнитных полей
- •4.4 Влияние естественных электромагнитных полей на живые организмы
- •4.5 Механизмы действия магнитных полей на живой организм
- •4.6 Промышленные магнитотерапевтические аппараты. Обзор и анализ требований
- •4.6.1 Магнитотерапевтические аппараты распределенного действия
- •4.6.2 Магнитотерапевтические аппараты локального действия
- •4.6.3 Магнитотерапевтические аппараты общего воздействия
- •4.7 Анализ задачи общего воздействия динамическим магнитным полем на человека и формирование требований на технические средства комплексной магнитотерапии
- •4.7.1 Формирование метрики векторов магнитного поля
- •4.7.2. Анализ метрики поля
- •4.7.3. Анализ метрики управления
- •4.8. Виды индукторов и создаваемых ими полей
- •5 Способы и устройства терапии с биологической обратной связью
- •Упражнений с ос по биологическим факторам
- •5.4 Алгоритм функционирования и структурная компоновка аппаратного комплекса
- •6 Электротерапевтические высокочастотные аппараты.
- •6.1. Физические обоснования и методики проведения процедур высокочастотной терапии
- •6.1.1. Физические основы действия высокочастотных колебаний на ткани организма
- •6.1.2. Диатермия
- •6.1.3. Электрохирургия
- •6.1.4. Дарсонвализация и терапия током надтональной частоты
- •6.2 Индуктотермия
- •6.3 Аппараты для дарсонвализации и терапии током надтональной частоты
- •6.6 Аппарат для общей дарсонвализации
- •7.1 Импульсная увч-терапия
- •7.2 Транзисторный вч тракт для аппарата увч терапии
- •7.3 Требования к вч тракту и его структура
- •7.4 Сумматор мощности
- •7.5 Общие сведения
- •7.6 Измеритель мощности для аппаратов увч-терапии
- •8 Ультразвуковая терапевтическая аппаратура
- •8.1 Физические обоснованияи методика проведения процедур ультразвуковой терапии
- •8.2 Аппаратная реализация аппаратов ультразвуковой терапии
- •8.3 Ультразвуковая терапевтическая техника
- •8.4 Акустоэлектронные терапевтические аппараты
- •9 Аппаратура для терапии постоянным электрическим полем, аэроионами и электроаэрозолями.
- •9.1 Физические обоснования и методика проведения процедур терапии постоянным электрическим полем и аэроионами.
- •9.2 Аппараты для франклинизации и аэроионотерапии
- •9.3 Физические обоснования и методики проведения процедур терапии электроаэрозолями
- •9.4 Аппараты для электроаэрозольтерапии
7.1 Импульсная увч-терапия
За последние годы в практику физиотерапии входит метод воздействия на организм электрическим полем УВЧ в импульсном режиме, называемый импульсной УВЧ-терапией. При импульсной УВЧ-терапии электрическое поле имеет импульсный характер (рис. 7.5). Генерация высокочастотных колебаний происходит в течение нескольких микросекунд, после чего следует пауза, в тысячу раз превышающая длительность самого импульса. Напряженность поля между электродами за время действия импульса достигает нескольких тысяч волы на метр, что в 6-7 раз больше, чем при непрерывном режиме. Поскольку мощность колебаний пропорциональна квадрату напряженности поля, то аппараты для импульсной УВЧ-терапии имеют мощность в импульсе до 15000 Вт, что в 40 раз больше мощности, которая может создаваться аппаратами для непрерывной УВЧ-терапии. Средняя мощность импульсных колебаний в тысячу раз меньше, чем мощность в импульсе и не превышает 15 Вт.
Рисунок 7.5 – График колебаний электрического поля УВЧ.
а - при непрерывном режиме; б - при импульсном режиме.
Тепловые эффекты, обусловленные средней мощностью, при импульсном режиме невелики. В то же время значительные величины напряженности поля в импульсе усиливают специфическое действие поля УВЧ: изменения структуры белковых молекул, концентрации ионов у клеточных мембран, гидратации ионов н молекул и др. Все эти нетепловые эффекты изменяют деятельность клеток и при действии на образования центральной нервной или вегетативной систем могут вызвать значительные сдвиги в функциональном состоянии организма.
Таким образом, при импульсной УВЧ терапии обеспечивается возможность осуществить интенсивное специфическое действие электрического поля УВЧ без заметного теплового эффекта.
Конструкция электродов и условия проведения процедур при импульсной УВЧ-терапии не отличаются от применяемых при обычной УВЧ-терапии.
7.2 Транзисторный вч тракт для аппарата увч терапии
В настоящее время большинство аппаратов работает на частоте 27,12 МГц в непрерывном или импульсном режиме. Построение УВЧ аппаратов на основе транзисторных ВЧ трактов имеет определенные преимущества – надежность, использование малых питающих напряжений, обеспечение стабильности fнес, создание отдельных модулей для увеличения выходной мощности, уменьшение электромагнитных помех. При разработке ВЧ трактов возникают определенные трудности, связанные с одной стороны с малыми выходными сопротивлениями транзисторов, а с другой – с изменением в широком диапазоне эквивалентной нагрузки. Эта эквивалентная нагрузка имеет комплексный характер. Ее активная часть определена внутренним сопротивлением тканей пациента и составляет 40-50 см, а реактивная носит емкостной характер. С учетом медицинской практики, емкость образованная телом пациента и плоскостью конденсаторной пластины электрода, к которой подведена ВЧ энергия, изменяется в широких пределах – 0,5-27 пФ. Такой диапазон дает, например, использование по очереди электродов 35, 70, 105, 240 мм, конденсаторные пластины которых устанавливаются на расстоянии 5, 10, 20, 25, 30 мм от пациента. Задача усложняется в виду того, что в силу особенностей применения УВЧ прибора (пациент не заземлен и находится на некотором расстоянии от аппарата) эквивалентная нагрузка носит симметричный характер и вынесена от корпуса на длину 0,7-1 м, что соизмеримо с длиной волны (=11 м). В общем случае нагрузка ВЧ тракта представляет собой двухпроводную длинную линию с волновым сопротивлением 600 Ом и электрической длинной 350, нагруженную комплексным сопротивлением (добротность Qmax100), активная часть которой ничтожно мала, а реактивная может изменяться в широких пределах. Требуется решить задачу о передаче мощности от транзисторного генератора в активную часть комплексной нагрузки во всем диапазоне ее изменения.