Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
K_Ekz_Gistologia (1).doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.56 Mб
Скачать

Гистология тканей зуба - из чего состоят зубы

Эмаль - твердая минерализованная ткань, покрывающая снаружи коронку зуба и защищающая дентин и пульпу от воздействия внешних раздражителей. Толщина слоя эмали максимальна в области бугров жевательных зубов, минимальна в области шейки. Эмаль - самая твердая ткань организма человека. Она содержит 95% минеральных веществ (гидроксиапатита, фторапатита, карбонатапатита), 1,2% органических, 3,8% воды. В эмали постоянно происходит обмен веществ (ионов), поступающих как изнутри - дентина, пульпы, так и из слюны. Одновременно с поступлением ионов (реминерализация) происходит их удаление (деминерализация). Эти процессы находятся в состоянии динамического равновесия.

Эмаль образована эмалевыми призмами и межпризменным веществом (рис. 43). Основные структурно - функциональные единицы эмали - эмалевые призмы. Они проходят через толщу эмали радиально, преимущественно перпендикулярно эмалево-дентинной границе, изогнуты в виде буквы S. Эмалевые призмы располагаются пучками, по 10-20 призм. В области шейки призмы располагаются горизонтально. Форма призм на поперечном сечении овальная, полигональная, чаще - арочная (в виде замочной скважины). Эмалевые призмы состоят из плотно уложенных и упорядоченных кристаллов гидроксиапатита. Между кристаллами - микропространства, заполненные водой (эмалевой жидкостью). В центральной части призмы кристаллы расположены параллельно оси призмы, при удалении от центра - отклоняются от ее направления.

Межпризменное вещество по строению идентично эмалевым призмам, но кристаллы rидроксиапатита ориентированы под прямым углом к кристаллам призмы. Минерализация межпризменного вещества ниже, поэтому трещины в эмали проходят по нему, не затрагивая призмы.

Из-за S-образного хода пучков на продольных шлифах пучки оказываются рассеченными продольно (паразоны) и поперечно диазоны) (рис. 44). Чередование паразон и диазон обуславливает появление темных и светлых полос, перпендикулярных поверхности эмали. Они называются полосами Гунтера - Шрегера, светлые полосы - паразоны, темные - диазоны.

Одновременно на продольных шлифах определяются линии Ретциуса (рис. 44). Они коричнево-желтого цвета, имеют вид арок, идущих косо от поверхности эмали до эмалево-дентинной границы. На поперечных шлифах - это концентрические круги. Линии Ретциуса - ростовые линии эмали, появляются в связи с периодичностью процесса обызвествления.

Структурные элементы - эмалевые пучки, пластинки и веретена (рис. 45) - участки эмали, содержащие недостаточно обызвествленные эмалевые призмы и межпризменное вещество, содержат белки (типа энамелина) в высокой концентрации.

Эмалевые пластинки тянутся от поверхности эмали до эмалево-дентинного соединения. Они могут служить путями распространения микроорганизмов с поверхности эмали в глубину. Эмалевые пучки проникают в эмаль на небольшое расстояние. Эмалевые веретена - короткие веретенообразные структуры, располагающиеся во внутренней трети эмали перпендикулярно эмалево-дентинной границе. Предполагают, что это замурованные отростки одонтобластов или энамелобласты, замурованные в эмали.

Поверхность эмали покрывает тонкая оболочка – кутикула, после прорезывания она стирается. Снаружи эмаль покрыта пелликулой, образующейся вследствие преципитации белков и гликопротеинов слюны. Сюда проникают микроорганизмы и образуется зубная бляшка. Минерализованная зубная бляшка называется зубным камнем. Микроорганизмы зубной бляшки выделяют органические кислоты, деминерализующие эмаль, что играет роль в развитии кариеса.

Функции эмали - защитная, трофическая (зубной ликвор).

Дентин - обызвествленная ткань зуба, образующая его основную массу и форму. В области коронки он покрыт эмалью, в области корня - цементом. Содержит 70 % неорганических веществ (гидроксиапатит), 20 % органических (коллаген типа 1), 10 % воды. Дентин состоит из обызвествленного - межклеточного вещества, пронизанного дентинными трубочками.

Межклеточное вещество представлено коллагеновыми волокнами, связанными с кристаллами гидроксиапатита. Кристаллы откладываются в виде зерен и глыбок, которые затем сливаются в шаровидные образования - глобулы и калькосфериты. Обызвествление дентина неравномерно.

Зоны гипоминерализованного дентина включают:

1) интерглобулярный дентин - располагается в наружной трети коронки параллельно эмалево-дентинной границе. Он представлен необызвествленными фибриллами, между ними глобулы обызвествленного дентина.

2) зернистый слой Томса - расположен на периферии корневого дентина. Состоит из мелких слабообызвествленных участков (зерен) вдоль дентино-цементной границы.

Предентин - внутренняя (необызвествленная) часть дентина, прилежащая к слою одонтобластов. Предентин - зона роста дентина (рис. 46).

Выявляют 2 слоя с различным ходом коллагеновых волокон:

1. Околопульпарный дентин - внутренний слой. Преобладают волокна, идущие тангенциально к эмалево-дентинной границе (тангенциальные волокна, или волокна Эбнера).

2. Плащевой дентин - наружный, покрывающий околопульпарный. Преобладают волокна радиального направления (радиальные волокна, или волокна Корфа. рис. 47).

Дентинные трубочки - тонкие канальцы, пронизывающие дентин от пульпы до периферии. Они обеспечивают трофику дентина. В дентинных трубочках находятся отростки одонтобластов. При кариесе дентинные трубочки с погибшими отростками одонтобластов служат путями распространения микроорганизмов и называются «мертвыми путями».

Стенку дентинной трубочки образует претибулярный дентин. Между дентинными трубочками располагается интертубулярный дентин.

Дентин (рис. 48) подразделяют на:

- первичный - образуется до прорезывания зуба;

- вторичный (регулярный, физиологический) - образуется после прорезывания. Характеризуется меньшим количеством трубочек, менее упорядоченным расположением трубочек и волокон. Но эти различия незначительны. В результате отложения вторичного дентина полость зуба уменьшается в размерах;

- третичный (иррегулярный, заместительный, репаративный) образуется в ответ на раздражение. Образуется локально, в месте раздражения, он неравномерно и слабо минерализован.

Трубочки имеют неправильный ход или отсутствуют.

Склерозированный (прозрачный) дентин. Образуется в результате отложения перитубулярного дентина в дентинных трубочках, что вызывает их сужение и облитерацию.

Функции дентина: трофическая, сенсорная, защитная.

Цемент - обызвествленная ткань зуба. Покрывает корни и шейку зуба (рис. 49). Наибольшая толщина в апикальной области. Содержит 50-60 % неорганических веществ (гидроксиапатит), 30-40 % - органических (коллаген).

Подразделяется на: бесклеточный (первичный) цемент - покрывает среднюю треть корня и шейку. Не содержит клеток, состоит из обызвествленного межклеточного вещества, включающего плотно расположенные коллaгеновые волокна и основное. Часть волокон располагается продольно, параллельно поверхности цемента. Другая часть более тонких волокон (шарпеевских) проходит радиально. Они продолжаются в пучки коллагеновых волокон периодонта. С другой стороны шарпеевские волокна спаяны с радиальными волокнами дентина.

Клеточный (вторичный) - покрывает апикальную треть корня и область бифуркации корней многокорневых зубов. Состоит из клеток и межклеточного вещества. Цементоциты сходны с остеоцитами и лежат в лакунах внутри цемента. Цeментобласты - активные клетки, обеспечивают отложение цемента. Располагаются на поверхности цемента. При образовании бесклеточного цемента цементобласты отодвигаются, при образовании клеточного - замуровываются в нем. Межклеточное вещество включает волокна и основное вещество. Происходит постоянное, но цикличное отложение цемента, образуются слои, определяемые на срезах.

Гиперцементоз - избыточное отложение цемента.

Функции цемента: защитная, удерживающая, репаративная, пассивное прорезывание.

Пульпа - рыхлая волокнистая соединительная ткань, заполняющая полость зуба. Образована клетками и межклеточным веществом. Клетки - одонтобласты, фибробласты, в меньшем количестве - макрофаги, дендритные клетки, лимфоциты, плазматические и тучные клетки, эозинофильные гранулоциты. Одонтобласты - клетки грушевидной формы в коронковой пульпе, кубической - в корневой. Они вырабатывают дентин. Отростки - волокна Томса - направляются в дентин.

Фибробласты - наиболее многочисленные, отросчатой формы клетки. Межклеточное вещество - собственно коллагеновые и ретикулярные волокна, погруженные в основное вещество.

Коронковая пульпа - рыхлая, богато васкуляризированная и иннервированная соединительная ткань, с большим количеством клеток. Одонтобласты располагаются в несколько рядов.

Корневая - содержит больше волокон, более плотная, слабее васкуляризирована и иннервирована, ее клеточный состав менее разнообразен.

В пульпе различают 3 клеточных слоя (рис. 50):

1) периферический - компактный слой одонтобластов в 1-8 рядов;

2) промежуточный (субодонтобластический) имеет 2 зоны:

- наружная (зона Вейля) - бесклеточный слой, бедная клетками. Содержит отростки клеток внутренней зоны, нервное сплетение Рашкова, кровеносные капилляры;

- внутренняя (клеточная, богатая клетками), содержит фибробласты, малодифференцированные клетки, преодонтобласты, капилляры, миелиновые и безмиелиновые волокна;

3) центральный слой представлен рыхлой волокнистой тканью, содержащей фибробласты, макрофаги, более крупные сосуды, пучки нервных волокон.

Кровеносные сосуды и нервы входят в пульпу через апикальное отверстие. Входят 2-3 артериолы, иногда еще дополнительные через добавочные отверстия. Артериолы в канале отдают боковые ветви к слою одонтобластов. Калибр их уменьшается, в коронке артериолы образуют аркады, их которых берут начало более мелкие сосуды. В коробковой пульпе выявлены все элементы микроциркуляторного русла. В пульпе имеются анастомозы в пульпе имеются лимфатические сосуды (отток лимфы на верхней челюсти через нижнечелюстное отверстие к подчелюстным узлам, на нижней челюсти - в глубокие лимфатические узлы у внутренней яремной вены).

Пучки нервных волокон сопровождают сосудисто-нервный пучок, ветвятся вместе с ним. Субодонтобластическое нервное сплетение Рашкова располагается кнутри от слоя одонтобластов. Волокна пульпы миелиновые и безмиелиновые.

В пульпе могут быть дентикли и петрификаты. Петрификаты - диффузные участки обызвествления. Дентикли - локальные обызвествления. Образования округлой или неправильной формы, состоящие из дентина (высокоорганизованные) или дентиноподобной ткани (низкоорганизованные). Первые образуются одонтобластами, вторые - малодифференцированными клетками. Бывают свободные (со всех сторон окружены пульпой), пристеночные (соприкасаются со стенкой), интерстициальные (замурованные в дентине).

функции пульпы: пластическая, трофическая, сенсорная, защитная и репаративная.

Гемоглобин (Hb) (от гемо... и лат. globus — шар), красный железосодержащий пигмент крови человека, позвоночных и некоторых беспозвоночных животных; в организме выполняет функцию переноса кислорода (O2) из органов дыхания к тканям; играет также важную роль в переносе углекислого газа от тканей в органы дыхания. У большинства беспозвоночных Г. свободно растворён в крови; у позвоночных и некоторых беспозвоночных находится в красных кровяных клетках — эритроцитах, составляя до 94% их сухого остатка. Молярная масса Г., включенного в эритроциты, около 66 000, растворённого в плазме — до 3000000. По химической природе Г. — сложный белок — хромопротеид, состоящий из белка глобина и железопорфирина — гема. У высших животных и человека Г. состоит из 4 субъединиц-мономеров с молярной массой около 17000; два мономера содержат по 141 остатку аминокислот (a-цепи), два других — по 146 остатков (b-цепи).

Пространственные структуры этих полипептидов во многом аналогичны. Они образуют характерные "гидрофобные карманы", в которых размещены молекулы гема (по одной на каждую субъединицу). Из 6 координационных связей атома железа, входящего в состав гема, 4 направлены на азот пиррольных колец; 5-я соединена с азотом имидазольного кольца гистидина, принадлежащего полипептидам и стоящего на 87-м месте в a-цепи и на 92-м месте в b-цепи; 6-я связь направлена на молекулу воды или др. группы (лиганды) и в том числе на кислород. Субъединицы рыхло связаны между собой водородными, солевыми и др. нековалентными связями и легко диссоциируют под влиянием амидов, повышенной концентрации солей с образованием главным образом симметричных димеров (ab) и частично a- и b-мономеров. Пространственная структура молекулы Г. изучена методом рентгеноструктурного анализа (М. Перуц, 1959).

Последовательность расположения аминокислот в a- и b-цепях Г. ряда высших животных и человека полностью выяснена. В собранной в тетрамер молекуле Г. все 4 остатка гема расположены на поверхности и легко доступны реакции с O2. Присоединение O2 обеспечивается содержанием в геме атома Fe2+. Эта реакция обратима и зависит от парциального давления (напряжения) O2. В капиллярах лёгких, где напряжение O2 около 100 мм рт. ст., Г. соединяется с O2 (процесс оксигенации), превращаясь в оксигенированный Г. — оксигемоглобин. В капиллярах тканей, где напряжение O2 значительно ниже (ок. 40 мм рт. ст.), происходит диссоциация оксигемоглобина на Г. и O2; последний поступает в клетки органов и тканей, где парциальное давление O2 ещё ниже (5—20 мм рт. cm.); в глубине клеток оно падает практически до нуля. Присоединение O2 к Г. и диссоциация оксигемоглобина на Г. и O2 сопровождаются конформационными (пространственными) изменениями молекулы Г., а также его обратимым распадом на димеры и мономеры с последующей агрегацией в тетрамеры.

Изменяются при реакции с O2 и др. свойства Г.: оксигенированный Г. — в 70 раз более сильная кислота, чем Г. Это играет большую роль в связывании в тканях и отдаче в лёгких CO2. Характерны полосы поглощения в видимой части спектра: у Г. — один максимум (при 554 ммк), у оксигенированного Г. — два максимума при 578 и 540 ммк. Г. способен непосредственно присоединять CO2 (в результате реакции CO2 с NH2-rpyппами глобина); при этом образуется карбгемоглобин — соединение неустойчивое, легко распадающееся в капиллярах лёгких на Г. и CO2.

Количество Г. в крови человека — в среднем 13—16 г% (или 78%—96% по Сали); у женщин Г. несколько меньше, чем у мужчин. Свойства Г. меняются в онтогенезе. Поэтому различают Г. эмбриональный, Г. — плода (foetus) — HbF, Г. взрослых (adult) — HbA. Сродство к кислороду у Г. плода выше, чем у Г. взрослых, что имеет существенное физиологическое значение и обеспечивает большую устойчивость организма плода к недостатку O2. Определение количества Г. в крови имеет важное значение для характеристики дыхательной функции крови в нормальных условиях и при самых различных заболеваниях, особенно при болезнях крови. Количество Г. определяют специальными приборами — гемометрами.

При некоторых заболеваниях, а также при врождённых аномалиях крови (см. Гемоглобинопатии) в эритроцитах появляются аномальные (патологические) Г., отличающиеся от нормальных замещением аминокислотного остатка в (- или b-цепях. Выделено более 50 разновидностей аномальных Г. Так, при серповидноклеточной анемии обнаружен Г., в b-цепях которого глутаминовая кислота, стоящая на 6-м месте от N-koнца, замещена валином. Аномалии эритроцитов, связанные с содержанием гемоглобина F или Н, лежат в основе талассемии, метгемоглобинемии. Дыхательная функция некоторых аномальных Г. резко нарушена, что обусловливает различные патологические состояния (анемии и др.). Свойства Г. могут меняться при отравлении организма, например угарным газом, вызывающим образование карбоксигемоглобина, или ядами, переводящими Fe2+ гема в Fe3+ с образованием метгемоглобина. Эти производные Г. не способны переносить кислород. Г. различных животных обладают видовой специфичностью, обусловленной своеобразием строения белковой части молекулы. Г., освобождающийся при разрушении эритроцитов, — источник образования жёлчных пигментов.

В мышечной ткани содержится мышечный Г. — миоглобин, по молярной массе, составу и свойствам близкий к субъединицам Г. (мономерам). Аналоги Г. обнаружены у некоторых растений (например, леггемоглобин содержится в клубеньках бобовых).

Гладкие миоциты: строение и функционирование

1. Мембранные системы гладких миоцитов

а) Гранулярная ЭПС.

I. В гладких миоцитах часто хорошо выражена гранулярная ЭПС. Это связано с тем, что данные клетки, помимо сократительной функции, могут выполнять и другую – синтетическую. А именно: подобно фибробластам, синтезировать компоненты межклеточного вещества – протеогликаны, коллаген, эластин и пр.

II. Данная функция является очень важной и заметной, например, у гладких миоцитов в стенке разнообразных сосудов.

III. Не исключено, что в миоцитарных комплексах существует функциональная специализация миоцитов: одни выполняют преимущественно сократительную функцию, а другие – преимущественно синтетическую функцию.

б) Системы транспорта ионов Са2+.

I. В то же время гладкие миоциты не содержат тех специфических мембранных систем, которые характерны для поперечнополосатых мышечных тканей. Имеются в виду Т-трубочки и L-канальцы с терминальными цистернами.

II. Поэтому по-другому решается проблема повышения в клетке концентрации ионов Са2+ при возбуждении: эти ионы поступают в цитозоль не столько из эндоплазматического ретикулума, сколько из межклеточной среды.

A) В ходе этого транспорта ионов Са2+ плазмолемма образует многочисленные впячивания – кавеолы, которые превращаются в пузырьки.

B) Кроме того, в плазмолемме имеются Са2+-каналы, которые (наряду с Nа+-каналами) открываются лишь при возбуждении клетки или при действии на мембранные рецепторы определенных регуляторов.

2. Сократительный аппарат. Гладкие миоциты содержат тонкие миофиламенты и (в несобранном виде) компоненты толстых миофиламентов.

а) Тонкие (актиновые) миофиламенты состоят только из актина (т. е. не содержат тропонин и тропомиозин) и прикрепляются к т.н. плотным тельцам (аналогам телофрагмы), которые либо связаны с плазмолеммой, либо находятся в цитоплазме.

б) Толстые же (миозиновые) миофиламенты в состоянии покоя, видимо, диссоциированы на фрагменты или даже отдельные молекулы миозина и поэтому не имеют фиксированного положения.

Соответственно, в покое в клетках нет миофибрилл (отчего клетки не имеют поперечной исчерченности).

3. Плотные тельца – специфические компоненты цитоскелета гладкого миоцита. Они делятся на два вида: плотные пластинки плазмолеммы и плотные тельца цитоплазмы.

а) Плотные пластинки плазмолеммы – пучки тонких микрофиламентов (из т. н. немышечного актина), которые идут под плазмолеммой вдоль длинной оси клетки на некотором расстоянии друг от друга и формируют «ребристый» каркас миоцита.

Лишь в промежутках между пластинками плазмолемма способна образовывать кавеолы.

б) Плотные тельца цитоплазмы имеют овальную форму. Они связаны нитями немышечного актина в цепочки, которые тоже расположены вдоль длинной оси миоцита и зафиксированы, видимо, с помощью промежуточных филаментов, идущих от телец к плазмолемме и прочим структурам.

Несмотря на разное строение, плотные пластинки плазмолеммы и плотные тельца цитоплазмы содержат отчасти те же белки (α-актинин и пр.), что и телофрагма в поперечнополосатых мышечных тканях (п. 11.2.2.3). Поэтому подобно телофрагме плотные тельца и пластинки служат (как уже было сказано) местом фиксации тонких миофиламентов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]