
- •Радиотехника и электроника
- •2.4. Связанные системы колебательных контуров
- •§ 1. Общие сведения - - - - - - - - - - - - - - - - - - - - - - - - - - - 53
- •5.4. Распространение коротких волн - - - - - - - - - - - - 88
- •5.2.1. Релаксационный генератор с неоновой
- •2.1. Принцип работы - - - - - - - - - - - - - - - - - - - - - - - - 177
- •2.3. Параметры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 180
- •§ 3. Тиристоры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 186
- •§ 4. Полупроводниковые триоды
- •4.6.1. Общие сведения - - - - - - - - - - - - - - - - - - 197
- •§ 5. Общие сведения о микроэлектронике
- •Введение Задачи радиотехники и электроники. Области их применения
- •Раздел 1. Сигналы и информация Глава 1. Общие сведения об информации § 1. Разделы науки, изучающие вопросы информации
- •§ 2. Преобразование и передача информации
- •§ 3. Понятие о сигналах и сообщениях
- •§ 4. Кодирование и представление сообщений
- •§ 5. Количественная мера информации
- •§ 6. Параметры информационных систем
- •Глава 2. Свойства сигналов и воздействий § 1. Классификация сигналов
- •§ 2. Основные характеристики сигнала
- •Раздел 2. Системы связи Глава 1. Принцип построения систем связи
- •Глава 2. Каналы связи § 1. Общие сведения
- •§ 2. Классификация каналов связи
- •§ 3. Основные характеристики канала связи
- •Глава 3. Непрерывный радиоканал связи § 1. Принцип работы
- •§ 2. Параметры
- •§ 3. Структурная схема
- •Глава 1. Линейные радиотехнические цепи с активными и реактивными элементами § 1. Общие сведения о линейных радиотехнических цепях
- •1.1. Активное сопротивление в цепи переменного тока
- •1.2. Индуктивность в цепи переменного тока
- •1.3. Емкость в цепи переменного тока
- •§ 2. Электрические колебательные контуры
- •2.1. Последовательный колебательный контур
- •2.1.1. Схема последовательного колебательного конура
- •2.1.2. Векторные диаграммы
- •2.1.3. Ток в контуре
- •2.1.4. Резонансная кривая
- •2.1.5. Напряжение на реактивных элементах
- •2.2. Параллельный колебательный контур
- •2.2.1. Схема
- •2.2.2. Векторные диаграммы
- •2.2.3. Сопротивление контура при резонансе
- •2.2.4. Полоса пропускания
- •2.3. Собственные колебания в колебательном контуре
- •2.4. Связанные системы колебательных контуров
- •2.4.1. Общие сведения
- •2.4.2. Трансформаторная связь
- •2.4.3. Автотрансформаторная связь
- •2.4.4. Емкостная связь
- •2.4.5. Многоконтурные системы
- •2.4.6. Электромеханические фильтры
- •§ 3. Распространение электромагнитной энергии вдоль бесконечно длинной линии
- •§ 4. Длинная линия, разомкнутая на конце
- •§ 5. Длинная линия, короткозамкнутая на конце
- •§ 6. Длинная линия, нагруженная на активное сопротивление
- •§ 7. Понятие о коэффициентах бегущей и стоячей волн
- •Глава 3. Передача энергии свч
- •§ 1. Коаксиальные кабели
- •§ 2. Волноводы
- •§ 3. Объемные резонаторы
- •3.3.7. Распределение электрического и магнитного полей по диаметру объемного резонатора Глава 4. Антенны § 1. Назначение
- •§ 2. Классификация антенн
- •§ 3. Симметричный вибратор
- •§ 4. Вертикальная заземленная (штыревая) антенна
- •§ 5. Понятие о действующей высоте антенны
- •§ 6. Направленность действия антенн
- •§ 2. Ионосфера
- •§ 3. Формирование радиоволн с различными механизмами распространения
- •3.1. Формирование поверхностных волн
- •3.2. Формирование ионосферных волн
- •3.3. Формирование прямых волн
- •§ 4. Влияние частоты на распространение радиоволн с различными механизмами
- •4.1. Поверхностные волны
- •4.2. Ионосферные волны
- •4.3. Прямые волны
- •§ 5. Особенности распространения радиоволн различных диапазонов
- •5.1. Разделение спектра радиочастот на диапазоны
- •5.2. Распространение длинных и сверхдлинных волн (диапазоны низких (lf) и очень низких частот (vlf)
- •5.3. Распространение средних и промежуточных волн (диапазон средних частот (mf)
- •5.4. Распространение коротких волн (диапазон высоких частот (hf)
- •5.5. Распространение ультракоротких волн (диапазон очень высоких частот (vhf)
- •Глава 6. Свойства импульсных сигналов § 1. Основные виды импульсных сигналов
- •§ 2. Частотный спектр импульсного колебания
- •Глава 7. Дифференцирующие и интегрирующие цепи § 1. Дифференцирующая цепь
- •§ 2. Интегрирующая цепь
- •Глава 1. Преобразование сигналов и спектров § 1. Модуляция
- •1.1. Амплитудная модуляция
- •1.1.1. Физические процессы, протекающие при амплитудной модуляции
- •1.1.2. Однополосная модуляция
- •1.2. Частотная и фазовая модуляция
- •§ 2 . Классы излучения
- •§ 3. Понятие несущей и присвоенной частоты
- •§ 4. Детектирование
- •4.1. Детектирование амплитудно-модулированных колебаний
- •4.2. Детектирование частотно-модулированных колебаний
- •4.2.1. Принцип действия частотного детектора с расстроенным колебательным контуром
- •4.2.2. Принцип действия балансного частотного детектора
- •§ 5. Генерирование колебаний
- •5.1. Генерирование синусоидальных колебаний
- •5.1.1. Автогенератор с трансформаторной обратной связью
- •5.1.2. Трехточечные схемы автогенераторов
- •5.2. Генерирование несинусоидальных колебаний
- •5.2.1. Релаксационный генератор с неоновой лампой
- •§ 6. Блокинг-генераторы
- •6.1. Классификация
- •6.2. Самовозбуждающийся (автоколебательный) блокинг-генератор
- •6.3. Ждущий блокинг-генератор
- •§ 7. Мультивибраторы
- •7.1. Автоколебательный мультивибратор
- •7.2. Ждущий мультивибратор
- •§ 8. Триггеры
- •8.1. Триггер с раздельным запуском
- •§ 9. Фантастронные генераторы
- •9.1. Самовозбуждающийся фантастронный генератор
- •Глава 1. Электронные лампы § 1. Двухэлектродная электронная лампа (диод)
- •1.1. Принцип работы
- •1.2. Схемные обозначения
- •1.3. Статические характеристики диода
- •1.4. Параметры
- •1.5. Применение
- •1.5.1. Однополупериодный выпрямитель
- •1.5.2. Двухполупериодный выпрямитель
- •1.5.3. Выпрямитель с удвоением напряжения
- •1.5.4. Сглаживающие фильтры
- •§ 2. Трехэлектродная электронная лампа (триод)
- •2.1. Принцип работы
- •2.2. Статические характеристики
- •2.3. Параметры
- •2.4. Применение
- •2.5. Недостатки триодов
- •§ 3. Четырехэлектродная электронная лампа (тетрод)
- •3.1. Принцип работы тетрода
- •3.2. Лучевой тетрод
- •§ 4. Пятиэлектродная электронная лампа (пентод)
- •4.1. Принцип работы пентода
- •4.2. Пентод с удлиненной сеточной характеристикой
- •§ 5. Многосеточные лампы
- •§ 6. Комбинированные лампы
- •§ 7. Система обозначений электронных ламп
- •Глава 2. Электронно - лучевые трубки
- •§ 1. Принцип действия
- •§ 2. Электронно-лучевые трубки с электростатическим управлением
- •§ 3. Электронно-лучевые трубки с магнитным управлением
- •§ 4. Характеристики экранов элт
- •§ 5. Условные обозначения
- •§ 6. Применение электронно-лучевых трубок
- •Глава 3. Ионные приборы § 1. Принцип действия
- •§ 2. Приборы с тлеющим разрядом
- •2.1. Неоновые лампы
- •2.2. Газонаполненные разрядники
- •2.3. Стабилитроны (стабиловольты)
- •§ 3. Приборы с дуговым разрядом
- •3.1. Газотроны
- •3.2. Тиратроны
- •3.3. Тригатроны
- •3.4. Игнитроны
- •§ 4. Обозначения ионных приборов
- •Глава 4. Полупроводниковые приборы §1. Общие сведения о полупроводниковых приборах
- •§ 2. Полупроводниковые диоды
- •2.1. Принцип работы
- •2.2. Вольтамперная характеристика
- •2.3. Параметры
- •2.4. Классификация диодов
- •По исходному материалу:
- •По конструкции:
- •По диапазону частот:
- •2.5. Назначение и применение различных типов полупроводниковых диодов
- •2.5.1. Выпрямительные диоды
- •2.5.1.1. Полупроводниковые выпрямители
- •2.5.1.2. Двухполупериодный выпрямитель мостикового типа
- •2.5.2. Высокочастотные (универсальные) диоды
- •2.5.3. Импульсные диоды
- •2.5.4. Варикапы
- •2.5.5. Стабилитроны
- •2.5.7. Туннельные и обращенные диоды
- •§ 3. Тиристоры
- •§ 4. Полупроводниковые триоды
- •4.1. Назначение
- •4.2. Принцип действия биполярных транзисторов
- •4.3. Устройство и работа биполярных транзисторов
- •5.3.1. Транзисторы типа "р-n-р"
- •4.3.2. Транзисторы типа "n-р-n"
- •4.4. Характеристики биполярных транзисторов
- •4.5. Особенности различных схем включения биполярных транзисторов
- •5.5.1. Схема с общей базой
- •4.5.2. Схема с общим эмиттером
- •4.5.3. Схема с общим коллектором
- •4.6. Устройство и работа униполярных (полевых) транзисторов
- •4.6.1. Общие сведения
- •4.6.2. Полевые транзисторы с "p-n"-переходом
- •4.6.3. Полевые транзисторы с изолированным затвором
- •4.6.4. Характеристики полевых транзисторов
- •4.7. Классификация транзисторов
- •4.8. Система обозначений транзисторов
- •§ 5. Общие сведения о микроэлектронике
- •5.1. Терминология
- •5.2. Основные логические элементы
- •6.3. Условные обозначения
- •Список использованной литераратуры
- •334509, Г. Керчь, ул. Орджоникидзе, 82.
Глава 2. Каналы связи § 1. Общие сведения
В системе связи одна и та же линия связи может использоваться для передачи сообщений от нескольких отправителей. В этом случае на передающем конце линии связи все сообщения преобразуются в электрические сигналы, которые затем смешиваются и передаются через общую линию связи.
На приемном конце линии связи принятые сигналы вновь разделяются и преобразуются в независимые сообщения, каждое из которых направляется к своему приемнику.
Таким образом, одна физическая линия связи может использоваться для организации нескольких каналов связи.
Каждый канал связи представляет собой совокупность технических средств, обеспечивающих независимую передачу и прием отдельного сообщения.
§ 2. Классификация каналов связи
В зависимости от формы представления сообщений на входе и выходе канала различают следующие виды каналов связи:
непрерывные каналы связи;
дискретные каналы связи.
§ 3. Основные характеристики канала связи
К основным характеристикам канала связи относятся:
Fк – полоса пропускания канала связи. Представляет собой полосу частот, пропускаемых каналом связи без значительного ослабления;
Dк – динамический диапазон:
Dк
= lg
;
где Pmax – допустимая нагрузка;
Pmin – чувствительность аппаратуры.
Vк – емкость канала связи:
Vк = Fк · Dк · Tк ;
где Tк – время, в течение которого канал связи выполняет свои функции.
Глава 3. Непрерывный радиоканал связи § 1. Принцип работы
Непрерывным каналом связи называется канал, предназначенный для передачи аналоговых сигналов.
Радиоканал представляет собой канал связи, в котором передача сигналов на расстояние осуществляется с помощью электромагнитного поля. Электромагнитное поле является сочетанием электрического и магнитного полей.
Любой провод, по которому протекает переменный электрический ток, излучает электромагнитные волны, распространяющиеся в пространстве со скоростью около 300 000 км/сек.
Количество энергии, излучаемой проводом (передающей антенной), зависит от соотношения между длиной волны излучаемых колебаний и геометрическими размерами провода. Для получения высокой эффективности излучения необходимо, чтобы геометрические размеры антенны составляли не менее 1/4 длины волны.
Электрические сигналы, соответствующие передаваемому сообщению, в большинстве случаев представляют собой низкочастотные (звуковые) колебания в пределах спектра частот, воспринимаемых органами слуха человека. Спектр частот, слышимых человеческим ухом, лежит в пределах от 16 Гц до 16 кГц. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1 до 4 кГц.
Однако, даже этот спектр частот передавать не обязательно, т. к. для разборчивости речи достаточно воспроизведение полосы частот в пределах от 300 до 2 400 Гц.
Эффективное излучение электромагнитных волн с такими низкими частотами практически невозможно из-за технических проблем, возникающих при постройке антенн с требуемыми параметрами. Например, для излучения частоты 300 Гц (длина волны 1 000 км) геометрическая длина антенны должна быть не менее 250 км. Для излучения частоты 2 400 Гц (длина волны 125 км) необходима антенна длиной более 30 км, что тоже не имеет практического смысла.
Кроме того, при одновременной работе нескольких передатчиков, каждый из которых излучает колебания звуковых частот, (например, при передаче телефонного разговора), прием сигналов от одного конкретного передатчика был бы невозможен из-за помех, создаваемых другими передатчиками.
По указанным причинам радиосвязь осуществляется только путем излучения высокочастотных колебаний (с рабочими частотами свыше 15 кГц). Для передачи низкочастотных сигналов необходимо, чтобы один из параметров высокочастотных колебаний (амплитуда, частота или фаза) изменялся в соответствии с законом изменения низкочастотного управляющего сигнала, т. е. в соответствии с передаваемым сообщением. Процесс изменения параметров излучаемых высокочастотных колебаний с помощью низкочастотного управляющего сигнала называется модуляцией.