
- •Радиотехника и электроника
- •2.4. Связанные системы колебательных контуров
- •§ 1. Общие сведения - - - - - - - - - - - - - - - - - - - - - - - - - - - 53
- •5.4. Распространение коротких волн - - - - - - - - - - - - 88
- •5.2.1. Релаксационный генератор с неоновой
- •2.1. Принцип работы - - - - - - - - - - - - - - - - - - - - - - - - 177
- •2.3. Параметры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 180
- •§ 3. Тиристоры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 186
- •§ 4. Полупроводниковые триоды
- •4.6.1. Общие сведения - - - - - - - - - - - - - - - - - - 197
- •§ 5. Общие сведения о микроэлектронике
- •Введение Задачи радиотехники и электроники. Области их применения
- •Раздел 1. Сигналы и информация Глава 1. Общие сведения об информации § 1. Разделы науки, изучающие вопросы информации
- •§ 2. Преобразование и передача информации
- •§ 3. Понятие о сигналах и сообщениях
- •§ 4. Кодирование и представление сообщений
- •§ 5. Количественная мера информации
- •§ 6. Параметры информационных систем
- •Глава 2. Свойства сигналов и воздействий § 1. Классификация сигналов
- •§ 2. Основные характеристики сигнала
- •Раздел 2. Системы связи Глава 1. Принцип построения систем связи
- •Глава 2. Каналы связи § 1. Общие сведения
- •§ 2. Классификация каналов связи
- •§ 3. Основные характеристики канала связи
- •Глава 3. Непрерывный радиоканал связи § 1. Принцип работы
- •§ 2. Параметры
- •§ 3. Структурная схема
- •Глава 1. Линейные радиотехнические цепи с активными и реактивными элементами § 1. Общие сведения о линейных радиотехнических цепях
- •1.1. Активное сопротивление в цепи переменного тока
- •1.2. Индуктивность в цепи переменного тока
- •1.3. Емкость в цепи переменного тока
- •§ 2. Электрические колебательные контуры
- •2.1. Последовательный колебательный контур
- •2.1.1. Схема последовательного колебательного конура
- •2.1.2. Векторные диаграммы
- •2.1.3. Ток в контуре
- •2.1.4. Резонансная кривая
- •2.1.5. Напряжение на реактивных элементах
- •2.2. Параллельный колебательный контур
- •2.2.1. Схема
- •2.2.2. Векторные диаграммы
- •2.2.3. Сопротивление контура при резонансе
- •2.2.4. Полоса пропускания
- •2.3. Собственные колебания в колебательном контуре
- •2.4. Связанные системы колебательных контуров
- •2.4.1. Общие сведения
- •2.4.2. Трансформаторная связь
- •2.4.3. Автотрансформаторная связь
- •2.4.4. Емкостная связь
- •2.4.5. Многоконтурные системы
- •2.4.6. Электромеханические фильтры
- •§ 3. Распространение электромагнитной энергии вдоль бесконечно длинной линии
- •§ 4. Длинная линия, разомкнутая на конце
- •§ 5. Длинная линия, короткозамкнутая на конце
- •§ 6. Длинная линия, нагруженная на активное сопротивление
- •§ 7. Понятие о коэффициентах бегущей и стоячей волн
- •Глава 3. Передача энергии свч
- •§ 1. Коаксиальные кабели
- •§ 2. Волноводы
- •§ 3. Объемные резонаторы
- •3.3.7. Распределение электрического и магнитного полей по диаметру объемного резонатора Глава 4. Антенны § 1. Назначение
- •§ 2. Классификация антенн
- •§ 3. Симметричный вибратор
- •§ 4. Вертикальная заземленная (штыревая) антенна
- •§ 5. Понятие о действующей высоте антенны
- •§ 6. Направленность действия антенн
- •§ 2. Ионосфера
- •§ 3. Формирование радиоволн с различными механизмами распространения
- •3.1. Формирование поверхностных волн
- •3.2. Формирование ионосферных волн
- •3.3. Формирование прямых волн
- •§ 4. Влияние частоты на распространение радиоволн с различными механизмами
- •4.1. Поверхностные волны
- •4.2. Ионосферные волны
- •4.3. Прямые волны
- •§ 5. Особенности распространения радиоволн различных диапазонов
- •5.1. Разделение спектра радиочастот на диапазоны
- •5.2. Распространение длинных и сверхдлинных волн (диапазоны низких (lf) и очень низких частот (vlf)
- •5.3. Распространение средних и промежуточных волн (диапазон средних частот (mf)
- •5.4. Распространение коротких волн (диапазон высоких частот (hf)
- •5.5. Распространение ультракоротких волн (диапазон очень высоких частот (vhf)
- •Глава 6. Свойства импульсных сигналов § 1. Основные виды импульсных сигналов
- •§ 2. Частотный спектр импульсного колебания
- •Глава 7. Дифференцирующие и интегрирующие цепи § 1. Дифференцирующая цепь
- •§ 2. Интегрирующая цепь
- •Глава 1. Преобразование сигналов и спектров § 1. Модуляция
- •1.1. Амплитудная модуляция
- •1.1.1. Физические процессы, протекающие при амплитудной модуляции
- •1.1.2. Однополосная модуляция
- •1.2. Частотная и фазовая модуляция
- •§ 2 . Классы излучения
- •§ 3. Понятие несущей и присвоенной частоты
- •§ 4. Детектирование
- •4.1. Детектирование амплитудно-модулированных колебаний
- •4.2. Детектирование частотно-модулированных колебаний
- •4.2.1. Принцип действия частотного детектора с расстроенным колебательным контуром
- •4.2.2. Принцип действия балансного частотного детектора
- •§ 5. Генерирование колебаний
- •5.1. Генерирование синусоидальных колебаний
- •5.1.1. Автогенератор с трансформаторной обратной связью
- •5.1.2. Трехточечные схемы автогенераторов
- •5.2. Генерирование несинусоидальных колебаний
- •5.2.1. Релаксационный генератор с неоновой лампой
- •§ 6. Блокинг-генераторы
- •6.1. Классификация
- •6.2. Самовозбуждающийся (автоколебательный) блокинг-генератор
- •6.3. Ждущий блокинг-генератор
- •§ 7. Мультивибраторы
- •7.1. Автоколебательный мультивибратор
- •7.2. Ждущий мультивибратор
- •§ 8. Триггеры
- •8.1. Триггер с раздельным запуском
- •§ 9. Фантастронные генераторы
- •9.1. Самовозбуждающийся фантастронный генератор
- •Глава 1. Электронные лампы § 1. Двухэлектродная электронная лампа (диод)
- •1.1. Принцип работы
- •1.2. Схемные обозначения
- •1.3. Статические характеристики диода
- •1.4. Параметры
- •1.5. Применение
- •1.5.1. Однополупериодный выпрямитель
- •1.5.2. Двухполупериодный выпрямитель
- •1.5.3. Выпрямитель с удвоением напряжения
- •1.5.4. Сглаживающие фильтры
- •§ 2. Трехэлектродная электронная лампа (триод)
- •2.1. Принцип работы
- •2.2. Статические характеристики
- •2.3. Параметры
- •2.4. Применение
- •2.5. Недостатки триодов
- •§ 3. Четырехэлектродная электронная лампа (тетрод)
- •3.1. Принцип работы тетрода
- •3.2. Лучевой тетрод
- •§ 4. Пятиэлектродная электронная лампа (пентод)
- •4.1. Принцип работы пентода
- •4.2. Пентод с удлиненной сеточной характеристикой
- •§ 5. Многосеточные лампы
- •§ 6. Комбинированные лампы
- •§ 7. Система обозначений электронных ламп
- •Глава 2. Электронно - лучевые трубки
- •§ 1. Принцип действия
- •§ 2. Электронно-лучевые трубки с электростатическим управлением
- •§ 3. Электронно-лучевые трубки с магнитным управлением
- •§ 4. Характеристики экранов элт
- •§ 5. Условные обозначения
- •§ 6. Применение электронно-лучевых трубок
- •Глава 3. Ионные приборы § 1. Принцип действия
- •§ 2. Приборы с тлеющим разрядом
- •2.1. Неоновые лампы
- •2.2. Газонаполненные разрядники
- •2.3. Стабилитроны (стабиловольты)
- •§ 3. Приборы с дуговым разрядом
- •3.1. Газотроны
- •3.2. Тиратроны
- •3.3. Тригатроны
- •3.4. Игнитроны
- •§ 4. Обозначения ионных приборов
- •Глава 4. Полупроводниковые приборы §1. Общие сведения о полупроводниковых приборах
- •§ 2. Полупроводниковые диоды
- •2.1. Принцип работы
- •2.2. Вольтамперная характеристика
- •2.3. Параметры
- •2.4. Классификация диодов
- •По исходному материалу:
- •По конструкции:
- •По диапазону частот:
- •2.5. Назначение и применение различных типов полупроводниковых диодов
- •2.5.1. Выпрямительные диоды
- •2.5.1.1. Полупроводниковые выпрямители
- •2.5.1.2. Двухполупериодный выпрямитель мостикового типа
- •2.5.2. Высокочастотные (универсальные) диоды
- •2.5.3. Импульсные диоды
- •2.5.4. Варикапы
- •2.5.5. Стабилитроны
- •2.5.7. Туннельные и обращенные диоды
- •§ 3. Тиристоры
- •§ 4. Полупроводниковые триоды
- •4.1. Назначение
- •4.2. Принцип действия биполярных транзисторов
- •4.3. Устройство и работа биполярных транзисторов
- •5.3.1. Транзисторы типа "р-n-р"
- •4.3.2. Транзисторы типа "n-р-n"
- •4.4. Характеристики биполярных транзисторов
- •4.5. Особенности различных схем включения биполярных транзисторов
- •5.5.1. Схема с общей базой
- •4.5.2. Схема с общим эмиттером
- •4.5.3. Схема с общим коллектором
- •4.6. Устройство и работа униполярных (полевых) транзисторов
- •4.6.1. Общие сведения
- •4.6.2. Полевые транзисторы с "p-n"-переходом
- •4.6.3. Полевые транзисторы с изолированным затвором
- •4.6.4. Характеристики полевых транзисторов
- •4.7. Классификация транзисторов
- •4.8. Система обозначений транзисторов
- •§ 5. Общие сведения о микроэлектронике
- •5.1. Терминология
- •5.2. Основные логические элементы
- •6.3. Условные обозначения
- •Список использованной литераратуры
- •334509, Г. Керчь, ул. Орджоникидзе, 82.
§ 7. Мультивибраторы
Мультивибратор является генератором прямоугольных импульсов. Приставка "мульти" означает, что этот генератор может вырабатывать импульсы в широком диапазоне частот.
Мультивибратор представляет собой двухкаскадный резисторный усилитель с емкостной положительной обратной связью между каскадами. Мультивибраторы, так же, как и блокинг-генераторы, могут быть автоколебательными и ждущими.
7.1. Автоколебательный мультивибратор
Схема автоколебательного мультивибратора приведена на рис. 4.1.21.
Рис. 4.1.21. Автоколебательный мультивибратор
В начальный момент после включения питающего напряжения через транзисторы Т1 и Т2 протекают одинаковые токи. Однако, даже незначительное увеличение коллекторного тока одного из транзисторов (например, Т1) вызовет понижение напряжения на его коллекторе. Отрицательный перепад напряжения передается через конденсатор С1 на базу транзистора Т2, что приводит к уменьшению его коллекторного тока и повышению напряжения на коллекторе. Положительный перепад напряжения на коллекторе транзистора Т2 передается через конденсатор С2 на базу транзистора Т1, вызывая дальнейшее увеличение коллекторного тока транзистора Т1. Происходит лавинообразный процесс, в результате которого транзистор Т1 окажется открытым, а Т2 – закрытым. Напряжение на коллекторе транзистора Т2 повысится до величины ЕК. С этого момента начинается заряд конденсатора С2 через резистор RК2 и промежуток база – эмиттер открытого транзистора Т1. Заряженный к этому времени конденсатор С1 начнет разряжаться через резистор RБ2 и коллекторную цепь открытого транзистора Т1. В процессе разряда конденсатора С1 транзистор Т2 остается закрытым, т. к. на его базе поддерживается отрицательное напряжение, создаваемое током разряда конденсатора.
По окончании разряда конденсатора С1 его разрядный ток уменьшится до нуля, и отрицательное напряжение на базе транзистора Т2 исчезнет. Это вызовет появление коллекторного тока транзистора Т2, в результате чего произойдет обратный лавинообразный процесс. Транзистор Т2 откроется, а транзистор Т1 – закроется.
С этого момента начинается разряд конденсатора С2. По окончании разряда конденсатора С2 происходит лавинообразный процесс, открывающий транзистор Т1 и запирающий транзистор Т2.
Длительность импульсов, формируемых каждым плечом автоколебательного мультивибратора, определяется постоянной времени цепи разряда конденсаторов:
τ1 = 0,7 · С1 · RБ2;
τ2 = 0,7 · С2 · RБ1;
Временные диаграммы, поясняющие работу автоколебательного мультивибратора, приведены на рис. 4.1.22.
Рис. 4.1.22. Временные диаграммы автоколебательного мультивибратора
7.2. Ждущий мультивибратор
Схема ждущего мультивибратора приведена на рис. 4.1.23, а временные диаграммы, поясняющие его работу, на рис. 4.1.24.
В исходном состоянии на базу транзистора Т2 подается положительное напряжение от источника питания Ек через резистор RБ2. В этом случае напряжение на базе транзистора Т2 равно:
UБ2 = Ек – URБ2,
где URБ2 – падение напряжения на резисторе RБ2.
Падение напряжения на резисторе RБ2 равно произведению тока, протекающего через резистор, на величину сопротивления этого резистора:
URБ2 = IБ2 · RБ2 ;
Рис. 4.1.23. Ждущий мультивибратор
Рис. 4.1.24. Временные диаграммы ждущего мультивибратора
Поскольку ток, протекающий через резистор RБ2 незначителен, то падение напряжения на этом резисторе мало, и к базе транзистора Т2 приложено почти полное напряжение источника питания Ек, благодаря чему транзистор Т2 поддерживается в открытом состоянии.
Коллекторный ток транзистора Т2, протекая через резистор RЭ, создает на этом резисторе падение напряжения, которое прикладывается к эмиттеру транзистора Т1. В то же время к базе транзистора Т1 приложено напряжение, снимаемое с делителя, образованного резисторами R1 и R2. Параметры резисторов R1, R2 и RЭ подобраны таким образом, чтобы в исходном состоянии потенциал базы транзистора Т1 оказался ниже, чем потенциал его эмиттера. В этом случае транзистор Т1 закрыт, и напряжение на его коллекторе практически равно напряжению источника питания: Uк1 = Ек. При этом конденсатор С2 заряжается от источника питания Ек через резистор RК1, промежуток база – эмиттер открытого транзистора Т2 и резистор RЭ. Время заряда конденсатора определяется, в основном, величиной емкости этого конденсатора и сопротивлением резистора RК1. По истечении указанного времени конденсатор С2 оказывается заряженным до максимального значения UCmax, причем левая обкладка конденсатора имеет потенциал, равный напряжению источника питания Ек, а правая – потенциал (Ек – UCmax).
Запуск ждущего мультивибратора осуществляется подачей положительного импульса на базу закрытого транзистора Т1 через конденсатор С1. При этом в цепи коллектора транзистора Т1 появляется ток Iк1, протекание которого через резистор Rк1 увеличивает падение напряжения на этом резисторе, в связи с чем потенциал коллектора транзистора Т1 понижается на величину UR1 = Iк1 · Rк1, и становится равным UК1 = Ек – UR1. Это вызывает понижение потенциала левой обкладки конденсатора С2 до величины UК1 = Ек – UR1. Поскольку в этот момент напряжение на конденсаторе С1 остается равным UCmax, то потенциал правой обкладки этого конденсатора уменьшается от значения (Ек – UCmax) до значения (UК1 – UCmax) = (Ек – UR1) – UCmax. Этот потенциал приложен к базе транзистора Т2, поэтому понижение указанного потенциала уменьшает коллекторный ток транзистора Т2. Поскольку коллекторный ток транзистора Т2 проходит через резистор RЭ, то уменьшение этого тока уменьшает падание напряжения на резисторе RЭ, что приводит к понижению потенциала эмиттера транзистора Т1, в связи с чем коллекторный ток транзистора Т1 еще больше увеличивается. Происходит лавинообразный процесс отпирания транзистора Т1 и запирания транзистора Т2.
В момент отпирания транзистора Т1 начинается перезаряд конденсатора С2 по цепи: источник питания + Ек, резистор RБ2, промежуток коллектор – эмиттер открытого транзистора Т1, резистор RЭ. Протекание тока перезаряда конденсатора С2 вызывает падание напряжения URБ2 на резисторе RБ2. Величина этого падения напряжения равна произведению тока перезаряда конденсатора С2 на величину сопротивления резистора RБ2. В начальный момент после запирания транзистора Т2 ток перезаряда конденсатора имеет максимальное значение, поэтому величина падения напряжения на резисторе RБ2 оказывается достаточной для поддержания транзистора Т2 в закрытом состоянии. По мере уменьшения тока перезаряда, величина падения напряжения на резисторе RБ2 постепенно уменьшается, потенциал базы транзистора Т2 увеличивается, и через некоторое время транзистор Т2 снова отпирается, а транзистор Т1 запирается. Таким образом, после перезаряда конденсатора происходит обратный лавинообразный процесс, возвращающий схему в исходное состояние. Время перезаряда конденсатора С2 определяется величиной емкости этого конденсатора и величиной сопротивления резистора RБ2.