
- •Радиотехника и электроника
- •2.4. Связанные системы колебательных контуров
- •§ 1. Общие сведения - - - - - - - - - - - - - - - - - - - - - - - - - - - 53
- •5.4. Распространение коротких волн - - - - - - - - - - - - 88
- •5.2.1. Релаксационный генератор с неоновой
- •2.1. Принцип работы - - - - - - - - - - - - - - - - - - - - - - - - 177
- •2.3. Параметры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 180
- •§ 3. Тиристоры - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 186
- •§ 4. Полупроводниковые триоды
- •4.6.1. Общие сведения - - - - - - - - - - - - - - - - - - 197
- •§ 5. Общие сведения о микроэлектронике
- •Введение Задачи радиотехники и электроники. Области их применения
- •Раздел 1. Сигналы и информация Глава 1. Общие сведения об информации § 1. Разделы науки, изучающие вопросы информации
- •§ 2. Преобразование и передача информации
- •§ 3. Понятие о сигналах и сообщениях
- •§ 4. Кодирование и представление сообщений
- •§ 5. Количественная мера информации
- •§ 6. Параметры информационных систем
- •Глава 2. Свойства сигналов и воздействий § 1. Классификация сигналов
- •§ 2. Основные характеристики сигнала
- •Раздел 2. Системы связи Глава 1. Принцип построения систем связи
- •Глава 2. Каналы связи § 1. Общие сведения
- •§ 2. Классификация каналов связи
- •§ 3. Основные характеристики канала связи
- •Глава 3. Непрерывный радиоканал связи § 1. Принцип работы
- •§ 2. Параметры
- •§ 3. Структурная схема
- •Глава 1. Линейные радиотехнические цепи с активными и реактивными элементами § 1. Общие сведения о линейных радиотехнических цепях
- •1.1. Активное сопротивление в цепи переменного тока
- •1.2. Индуктивность в цепи переменного тока
- •1.3. Емкость в цепи переменного тока
- •§ 2. Электрические колебательные контуры
- •2.1. Последовательный колебательный контур
- •2.1.1. Схема последовательного колебательного конура
- •2.1.2. Векторные диаграммы
- •2.1.3. Ток в контуре
- •2.1.4. Резонансная кривая
- •2.1.5. Напряжение на реактивных элементах
- •2.2. Параллельный колебательный контур
- •2.2.1. Схема
- •2.2.2. Векторные диаграммы
- •2.2.3. Сопротивление контура при резонансе
- •2.2.4. Полоса пропускания
- •2.3. Собственные колебания в колебательном контуре
- •2.4. Связанные системы колебательных контуров
- •2.4.1. Общие сведения
- •2.4.2. Трансформаторная связь
- •2.4.3. Автотрансформаторная связь
- •2.4.4. Емкостная связь
- •2.4.5. Многоконтурные системы
- •2.4.6. Электромеханические фильтры
- •§ 3. Распространение электромагнитной энергии вдоль бесконечно длинной линии
- •§ 4. Длинная линия, разомкнутая на конце
- •§ 5. Длинная линия, короткозамкнутая на конце
- •§ 6. Длинная линия, нагруженная на активное сопротивление
- •§ 7. Понятие о коэффициентах бегущей и стоячей волн
- •Глава 3. Передача энергии свч
- •§ 1. Коаксиальные кабели
- •§ 2. Волноводы
- •§ 3. Объемные резонаторы
- •3.3.7. Распределение электрического и магнитного полей по диаметру объемного резонатора Глава 4. Антенны § 1. Назначение
- •§ 2. Классификация антенн
- •§ 3. Симметричный вибратор
- •§ 4. Вертикальная заземленная (штыревая) антенна
- •§ 5. Понятие о действующей высоте антенны
- •§ 6. Направленность действия антенн
- •§ 2. Ионосфера
- •§ 3. Формирование радиоволн с различными механизмами распространения
- •3.1. Формирование поверхностных волн
- •3.2. Формирование ионосферных волн
- •3.3. Формирование прямых волн
- •§ 4. Влияние частоты на распространение радиоволн с различными механизмами
- •4.1. Поверхностные волны
- •4.2. Ионосферные волны
- •4.3. Прямые волны
- •§ 5. Особенности распространения радиоволн различных диапазонов
- •5.1. Разделение спектра радиочастот на диапазоны
- •5.2. Распространение длинных и сверхдлинных волн (диапазоны низких (lf) и очень низких частот (vlf)
- •5.3. Распространение средних и промежуточных волн (диапазон средних частот (mf)
- •5.4. Распространение коротких волн (диапазон высоких частот (hf)
- •5.5. Распространение ультракоротких волн (диапазон очень высоких частот (vhf)
- •Глава 6. Свойства импульсных сигналов § 1. Основные виды импульсных сигналов
- •§ 2. Частотный спектр импульсного колебания
- •Глава 7. Дифференцирующие и интегрирующие цепи § 1. Дифференцирующая цепь
- •§ 2. Интегрирующая цепь
- •Глава 1. Преобразование сигналов и спектров § 1. Модуляция
- •1.1. Амплитудная модуляция
- •1.1.1. Физические процессы, протекающие при амплитудной модуляции
- •1.1.2. Однополосная модуляция
- •1.2. Частотная и фазовая модуляция
- •§ 2 . Классы излучения
- •§ 3. Понятие несущей и присвоенной частоты
- •§ 4. Детектирование
- •4.1. Детектирование амплитудно-модулированных колебаний
- •4.2. Детектирование частотно-модулированных колебаний
- •4.2.1. Принцип действия частотного детектора с расстроенным колебательным контуром
- •4.2.2. Принцип действия балансного частотного детектора
- •§ 5. Генерирование колебаний
- •5.1. Генерирование синусоидальных колебаний
- •5.1.1. Автогенератор с трансформаторной обратной связью
- •5.1.2. Трехточечные схемы автогенераторов
- •5.2. Генерирование несинусоидальных колебаний
- •5.2.1. Релаксационный генератор с неоновой лампой
- •§ 6. Блокинг-генераторы
- •6.1. Классификация
- •6.2. Самовозбуждающийся (автоколебательный) блокинг-генератор
- •6.3. Ждущий блокинг-генератор
- •§ 7. Мультивибраторы
- •7.1. Автоколебательный мультивибратор
- •7.2. Ждущий мультивибратор
- •§ 8. Триггеры
- •8.1. Триггер с раздельным запуском
- •§ 9. Фантастронные генераторы
- •9.1. Самовозбуждающийся фантастронный генератор
- •Глава 1. Электронные лампы § 1. Двухэлектродная электронная лампа (диод)
- •1.1. Принцип работы
- •1.2. Схемные обозначения
- •1.3. Статические характеристики диода
- •1.4. Параметры
- •1.5. Применение
- •1.5.1. Однополупериодный выпрямитель
- •1.5.2. Двухполупериодный выпрямитель
- •1.5.3. Выпрямитель с удвоением напряжения
- •1.5.4. Сглаживающие фильтры
- •§ 2. Трехэлектродная электронная лампа (триод)
- •2.1. Принцип работы
- •2.2. Статические характеристики
- •2.3. Параметры
- •2.4. Применение
- •2.5. Недостатки триодов
- •§ 3. Четырехэлектродная электронная лампа (тетрод)
- •3.1. Принцип работы тетрода
- •3.2. Лучевой тетрод
- •§ 4. Пятиэлектродная электронная лампа (пентод)
- •4.1. Принцип работы пентода
- •4.2. Пентод с удлиненной сеточной характеристикой
- •§ 5. Многосеточные лампы
- •§ 6. Комбинированные лампы
- •§ 7. Система обозначений электронных ламп
- •Глава 2. Электронно - лучевые трубки
- •§ 1. Принцип действия
- •§ 2. Электронно-лучевые трубки с электростатическим управлением
- •§ 3. Электронно-лучевые трубки с магнитным управлением
- •§ 4. Характеристики экранов элт
- •§ 5. Условные обозначения
- •§ 6. Применение электронно-лучевых трубок
- •Глава 3. Ионные приборы § 1. Принцип действия
- •§ 2. Приборы с тлеющим разрядом
- •2.1. Неоновые лампы
- •2.2. Газонаполненные разрядники
- •2.3. Стабилитроны (стабиловольты)
- •§ 3. Приборы с дуговым разрядом
- •3.1. Газотроны
- •3.2. Тиратроны
- •3.3. Тригатроны
- •3.4. Игнитроны
- •§ 4. Обозначения ионных приборов
- •Глава 4. Полупроводниковые приборы §1. Общие сведения о полупроводниковых приборах
- •§ 2. Полупроводниковые диоды
- •2.1. Принцип работы
- •2.2. Вольтамперная характеристика
- •2.3. Параметры
- •2.4. Классификация диодов
- •По исходному материалу:
- •По конструкции:
- •По диапазону частот:
- •2.5. Назначение и применение различных типов полупроводниковых диодов
- •2.5.1. Выпрямительные диоды
- •2.5.1.1. Полупроводниковые выпрямители
- •2.5.1.2. Двухполупериодный выпрямитель мостикового типа
- •2.5.2. Высокочастотные (универсальные) диоды
- •2.5.3. Импульсные диоды
- •2.5.4. Варикапы
- •2.5.5. Стабилитроны
- •2.5.7. Туннельные и обращенные диоды
- •§ 3. Тиристоры
- •§ 4. Полупроводниковые триоды
- •4.1. Назначение
- •4.2. Принцип действия биполярных транзисторов
- •4.3. Устройство и работа биполярных транзисторов
- •5.3.1. Транзисторы типа "р-n-р"
- •4.3.2. Транзисторы типа "n-р-n"
- •4.4. Характеристики биполярных транзисторов
- •4.5. Особенности различных схем включения биполярных транзисторов
- •5.5.1. Схема с общей базой
- •4.5.2. Схема с общим эмиттером
- •4.5.3. Схема с общим коллектором
- •4.6. Устройство и работа униполярных (полевых) транзисторов
- •4.6.1. Общие сведения
- •4.6.2. Полевые транзисторы с "p-n"-переходом
- •4.6.3. Полевые транзисторы с изолированным затвором
- •4.6.4. Характеристики полевых транзисторов
- •4.7. Классификация транзисторов
- •4.8. Система обозначений транзисторов
- •§ 5. Общие сведения о микроэлектронике
- •5.1. Терминология
- •5.2. Основные логические элементы
- •6.3. Условные обозначения
- •Список использованной литераратуры
- •334509, Г. Керчь, ул. Орджоникидзе, 82.
§ 4. Влияние частоты на распространение радиоволн с различными механизмами
При осуществлении радиосвязи возможно использование всех трех механизмов распространения радиоволн. Степень влияния каждого из них зависит от частоты применяемых радиоволн.
4.1. Поверхностные волны
Способность поверхностных радиоволн к огибанию земной поверхности и других крупных препятствий зависит от частоты этих радиоволн. Огибание тем лучше, чем больше длина волны по сравнению с геометрическими размерами поверхности, на которую падают радиоволны. Повышение частоты радиоволн приводит к ухудшению их способности к огибанию.
При повышении частоты увеличиваются также потери энергии в земле, растительности и других поверхностных объектах.
4.2. Ионосферные волны
При распространении радиоволн в ионосфере наибольшее затухание сигнала происходит при низких рабочих частотах. Это объясняется тем, что при колебательном движении заряженных частиц, вызываемом воздействием радиоволн, длина пути этих частиц увеличивается с увеличением длины волны. При этом частота столкновений частиц тоже увеличивается, что приводит к увеличению поглощения энергии радиоволн ионосферой.
Угол преломления радиоволн в ионосфере также зависит от рабочей частоты. Чем ниже частота используемых радиоволн, тем большее преломление испытывает радиолуч при прохождении одних и тех же слоев ионосферы (рис. 3.5.7).
Рис.1.7.7. Отражение радиоволн различных частот от ионосферы
Полное отражение радиоволн от конкретного ионосферного слоя может произойти только в том случае, если рабочая частота не превышает некоторого определенного значения, называемого критической частотой ионосферного слоя (fкр). Радиоволны, частота которых выше критической, проходят сквозь этот слой без отражения.
4.3. Прямые волны
При распространении радиоволн над земной поверхностью их способность к огибанию Земли зависит от рабочей частоты. Чем выше частота, тем меньше дифракция радиоволн. При полном отсутствии дифракции образуются прямые волны.
Поглощение энергии радиоволн земной поверхностью также увеличивается с повышением рабочей частоты. В связи с тем, что прямые волны образуются только при использовании высоких частот, распространение прямых волн вблизи земной поверхности сопровождается значительными потерями энергии.
Прямые волны используются для космической радиосвязи через искусственные спутники Земли, а также для наземной радиосвязи на короткие расстояния (в основном, при мобильной связи).
При осуществлении радиосвязи между земными и космическими станциями необходимо, чтобы радиоволны проходили сквозь атмосферу без изменения направления. Для предотвращения преломления радиоволн в ионосфере рабочая частота связи должна существенно превышать критическую частоту ионосферного слоя с наивысшей степенью ионизации.
Практически радиоволны с частотой выше 30 МГц проходят сквозь все слои ионосферы без отражения.
Использование прямых волн для мобильной связи осуществляется также на частотах свыше 30 МГц, т. к. использование этих частот не требует применения громоздких антенн.