
- •2. Случайное событие
- •3. Основные типы событий. Алгебра событий.
- •4. Понятие вероятности события.
- •5. Теорема сложения вероятностей.
- •6. Сумма и произведение совместных событий и их геометрическая интерпретация.
- •7. Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •10. Формула Бернулли.
- •11. Формула Пуассона и условия ее применимости.
- •12. Дискретные случайные события и возможности их описания.
- •13. Закон распределения дискретной случайной величины. Многоугольник распределения.
- •14. Функция распределения и ее свойства. Вероятность попадания случайной величины на заданный интервал.
- •15. Плотность распределения и ее свойства. Вероятностный и геометрический смысл плотности распределения.
- •16. Математическое ожидание случайной величины и его свойства.
- •17. Дисперсия и среднее квадратичное отклонение случайной величины и ее свойства.
- •18. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •19.Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •22. Закон равномерного распределения.
- •23. Экспоненциальный (показательный) закон распределения.
- •25. Вероятность попадания в заданный интервал. Правило трех сигм
- •26. Система двух случайных величин. Ф-я распред, св-ва. Вероятн попадания в полуполосу и прямоугольник
- •28. Закон распределения случайных величин входящих в систему
- •24. Нормальное распределение. Функция Лапласа
- •29. Свойства коэффициента корреляции
- •31. Генеральная совокупность и выборка. Характеристики выборки.
- •34&35. Закон больших чисел и его следствие.
- •32. Статистическое распределение выборки. Эмпирическая функция распределения
- •33. Полигон и гистограмма.
- •30. Выборочная средняя и выборочная дисперсия.
- •37&39&41. Точечная и интервальная оценки. Доверительный интервал.
- •38. Основные методы определения точечных оценок.
26. Система двух случайных величин. Ф-я распред, св-ва. Вероятн попадания в полуполосу и прямоугольник
Две сл. вел-ны могут быть связаны либо функциональной зависимостью, либо зависимостью другого рода, называемой статистической, либо быть независимыми. Строгая функ-ная зав-ть реализуется редко, т.к. обе величины или одна из них подвержены еще действию случ.факторов, причем среди них могут быть и общие для обеих величин. В этом случае возникает статистическая зависимость. Стат-кой нзв зав-ть, при к-рой изменение одной из величин влечет изменение распределения другой. В частности, стат.зав-ть проявл.в том, что при изменении одной из величин изменяется среднее значение другой. В этом случае стат.зав-ть нзв корреляционной
Определение 8.1. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y:
F( х, у ) = p ( X < x, Y < y ).
Рис.1.
Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у).
Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины
Свойства функции распределения.
0 ≤ F(x, y) ≤ 1 (так как F(x, y) является вероятностью).
F(x, y) есть неубывающая функция по каждому аргументу:
F(x2, y) ≥ F(x1, y), если x2 > x1;
F(x, y2) ≥ F(x, y1), если y2 > y1.
Доказательство. F(x2, y) = p(X < x2, Y < y) = p(X < x1, Y < y) + p(x1 ≤ X < x2, Y < y) ≥
≥ p(X < x1, Y < y) = F(x1, y). Аналогично доказывается и второе утверждение.
Имеют место предельные соотношения:
а) F(-∞, y) = 0; b) F(x, - ∞) = 0; c) F(- ∞, -∞) = 0; d) F( ∞, ∞) = 1.
Доказательство. События а), b) и с) невозможны ( так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств.
При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х:
F(x, ∞) = F1(x).
При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y :
F( ∞, y) = F2(y).
Доказательство. Так как событие Y < ∞ достоверно, то F(x, ∞) = р(Х < x) = F1(x). Аналогично доказывается второе утверждение.
27. Плотность распределения вероятностей двумерной случайной величины и её свойства. Плотностью совместного распределения вероятностей (двумерной плотностью вероятности) непрерывной двумерной случайной величины называется смешанная частная производная 2-го порядка от функции распределения:
.
Замечание.
Двумерная
плотность вероятности представляет
собой предел отношения вероятности
попадания случайной точки в прямоугольник
со сторонами Δх
и Δу
к площади этого прямоугольника при
Свойства двумерной плотности вероятности.
f(x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен).
(cледует из определения двумерной плотности вероятно-сти).
(поскольку это вероятность того, что точка попадет на плос-кость Оху, то есть достоверного события).